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Abstract

Timely data on educational attainment at granular geographic levels remains scarce in

many countries, limiting evidence-based policy-making. Recent advances in machine

learning have enabled the use of non-traditional data sources like satellite imagery and

mobile phone records to measure development indicators. While these approaches have

been successful in predicting outcomes such as wealth, poverty, or population density,

previous attempts to predict educational attainment have achieved only modest accuracy.

A key challenge is finding data sources that directly reflect human capital rather than

its economic consequences. Here we show that language patterns and user behavior in

social media can explain up to 70 percent of the variance in regional educational attain-

ment. Our machine learning framework leverages linguistic features, user behavior, and

network characteristics from 25 million geolocated tweets from the United States and

Mexico. It performs particularly well in predicting higher education levels and maintains

a good performance even with limited data collection periods. These results show that

digital communication patterns can serve as reliable proxies for human capital. In light

of the rapid expansion of social media use around the globe, this represents a promising

approach to tracking educational outcomes in regions lacking granular and timely survey

data.
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1 Introduction

Reliable data on key socio-economic outcomes enables policy-makers to make informed

decisions and promote societal development. However, many countries are plagued by a

pervasive lack of such data, limiting their ability to track progress and evaluate policies.

To address the problem, a growing body of literature uses alternative data sources such as

satellite imagery or phone records to bridge the existing gaps in data availability (Burke

et al., 2021). While previous studies have successfully predicted outcomes such as wealth,

income or population density, this paper proposes an innovative approach to measuring

human capital using geolocated Twitter data (now X ).

We focus on educational attainment as our measure of human capital (Becker, 1964;

Mincer, 1974), and validate our approach with two countries that differ markedly in

language, economic development, and social media penetration: the United States and

Mexico. Specifically, we construct a set of interpretable measures of education at low

administrative units (municipality in Mexico and county in the United States) based on

over 25 million tweets. Our feature matrix includes basic Twitter penetration (e.g., user

density) and usage statistics (e.g., tweet length), text-based indicators on spelling mistakes

(e.g., frequency of grammatical errors), topics (e.g., share of tweets about science), and

sentiments (e.g., share of negative tweets), as well as network indicators (e.g., closeness

centrality). We train a stacking regressor combining five machine learning algorithms

— elastic net regression, gradient boosting, support vector regression, nearest neighbor

regression, and a feed-forward neural network — to predict educational attainment for

Mexican municipalities (N = 2,457) and US counties (N = 3,141). We apply grid search

to tune the relevant hyperparameters of each model, and evaluate the performance of the

final models using five-fold cross-validation.

Our predictions account for 70 percent of the variation in years of schooling in Mexican

municipalities and 65 percent in US counties. Where, how and what people tweet is thus

highly informative about human capital. Within both countries, Twitter data appears to

be particularly well-suited for distinguishing higher levels of education. For example, we

achieve an R2 of 0.70 in predicting county-level shares of US adults holding a bachelor’s

degree, while the corresponding R2 for the percentage with a high school degree is only

0.50. We observe a similar though less pronounced relationship for Mexico, with an R2

of 0.69 for the share with post-basic education and 0.61 for the percentage completing

primary education.

Our focus on a limited number of meaningful features also allows us to study which

(groups of) features are most predictive of educational outcomes. In most models, the user
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density emerges as the single most important predictor of educational outcomes. Twitter

penetration features are particularly informative in Mexico, where they alone account

for 57 percent of the variation in educational outcomes, compared to 37 percent in the

US. Similarly, error and network features appear to be strongly related to education in

Mexico (R2 = 0.55 and 0.51, respectively), but less so in the US (R2 = 0.42 and 0.34,

respectively). General tweet statistics and topics have consistently high predictive power

in Mexico and the United States (R2 between 0.5 and 0.6).

The main challenge to model performance arises in sparsely populated areas with low

Twitter penetration. Accordingly, the population-weighted R2 for years of schooling is

0.85 for Mexico and 0.70 for the US (compared to 0.70 and 0.65 in our unweighted base

model). Similarly, restricting the evaluation sample to areas with at least ten users would

increase performance to 0.74 in Mexico and 0.68 in the US. We also explore how model

performance evolves depending on the data collection period, finding that we can achieve

relatively high predictive power with just three days of tweet data, namely an R2 of 0.66

for Mexico and 0.58 for the United States.

Using wealth data for Mexico and income data for the US, we further explore how our

measure of human capital performs in downstream tasks by comparing regression results

based on predicted vs. ground truth measures of education. We find that slope coefficients

tend to be biased not only when using the predicted indicator as an independent variable,

but also when it acts as the dependent variable. The latter bias results from the typical

model tendency to overpredict for low values and underpredict for high values. When

using a loss function that penalizes quintile-specific biases (see Ratledge et al., 2022), the

bias disappears, and regression coefficients based on our predicted indicator become very

similar to their ground truth counterparts. Our simulations show that when appropriately

modeled, predicted indicators can produce correct estimates in downstream regression

tasks as long as they serve as the outcome and not the treatment variable.

This paper contributes to the recent literature exploring the combined potential of

non-conventional data sources and machine learning to measure and understand socio-

economic development. While a range of outcomes including wealth (Jean et al., 2016;

Blumenstock, Cadamuro, and On, 2015; Yeh et al., 2020; Aiken et al., 2022), population

density (Stevens et al., 2015; Wardrop et al., 2018), crop yield (Lobell, 2013; Burke

and Lobell, 2017; Sun et al., 2019), informal settlements (Kuffer, Pfeffer, and Sliuzas,

2016; Mboga et al., 2017), electricity access (Ratledge et al., 2022), and disease spread

(Wesolowski et al., 2012; Chang et al., 2021) have been accurately predicted using satellite

or phone data, previous attempts to infer human capital have been less successful. Head

et al. (2017) use satellite data to predict educational attainment in Rwanda, Nigeria,
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Haiti and Nepal, achieving an average R2 of ∼0.55. The predictive power of other data

sources, such as Google Street View images (Gebru et al., 2017) or Wikipedia articles

(Sheehan et al., 2019), appears to be even lower, accounting for less than 40 percent

of the variation in educational outcomes. A key limitation of these approaches, is that

the underlying data does not contain any information on education itself, but only on

its economic consequences. We show that by using geolocated Twitter data and natural

language processing, we cannot only derive a more accurate indicator of human capital

than previous studies but also achieve similar performance to the well-known wealth

prediction using satellite data.

We also add to the literature leveraging social media data for social science research.

Nearly five billion people worldwide used at least one social media platform in 2023, and

another billion are projected to join by 2027, as emerging and developing economies catch

up (Poushter, Bishop, and Chwe, 2018; Statista, 2022). Social media data has been used

to predict or study diverse outcomes such as migration (Huang et al., 2020; Yin, Gao,

and Chi, 2022), social capital (Chetty et al., 2022), censorship (King, Pan, and Roberts,

2013), alcohol consumption (Curtis et al., 2018) or stock market prices (Bollen, Mao, and

Zeng, 2011). Moreover, micro-evidence suggests that social media posts are informative

about educational characteristics of individual users (Smirnov, 2020; Gómez et al., 2021).

This paper goes a step further and shows that despite the high endogenous selection in

social media usage (Mellon and Prosser, 2017), the corresponding data can be used to

derive accurate education estimates at low administrative units within countries. This

underscores the potential of social media data as part of a global tracking system that

provides timely and granular information on educational outcomes.

2 Data and Methods

To develop and validate our approach, we focus on two large countries with high-quality

ground truth data on educational outcomes: the United States and Mexico. This pairing

allows us to test our approach across different languages (English vs. Spanish), develop-

ment contexts (high income vs. middle income), and, most importantly, levels of Twitter

penetration (see Figure 1). While the United States has one of the highest user densities

in the Americas, Mexico ranks in the lower middle overall and has the lowest penetration

among the five most populous countries in the region. By testing our approach in these

diverse and data-rich contexts, we aim to establish a foundation for potential application

in regions where traditional survey data are scarce or outdated.
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Figure 1: Twitter penetration across the Americas
Geolocated Twitter users per 1,000 inhabitants captured through the Twitter Streaming API in July-
August 2021 for countries in North, Central, and South America.

2.1 Collection and Processing of Twitter Data

We used the Twitter Streaming API to compile a large tweet dataset for both countries.

Until early 2023, Twitter provided free access to real-time information on 1% of all tweets

through its Streaming API, including the text of each tweet and a set of tweet and user

characteristics.1 Our final dataset consists of 2,686,779 geolocated tweets from 123,309

users for Mexico and 22,610,134 tweets from 943,164 users for the United States, collected

between July and August 2021.

The tweets included in our final dataset were selected based on three criteria:

1. Geographical location: We excluded all tweets that were not posted from within the

geographic territory of the respective country. In the case of the United States, we

1In February 2023, the free Streaming API was replaced with a paid service. Twitter described the
1% sample provided by its free Streaming API as random, though the exact mechanism was proprietary,
not fully transparent, and shown to exhibit systematic biases (Morstatter et al., 2013). Importantly, the
generalizability of our approach does not require the sample to be representative of all Twitter users
but only consistent across countries and time. While Twitter provided a single global API endpoint,
the proprietary nature of the sampling mechanism means that regional differences in coverage cannot be
entirely ruled out. However, Morstatter et al. (2013) found that when using geographic bounding boxes
as collection parameters — as we do — the Streaming API captured approximately 90% of geotagged
tweets rather than the nominal 1% sampling rate, leaving limited room for region-specific variation in
sampling coverage.
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use all tweets from the mainland, Alaska and Hawaii, but not from unincorporated

territories such as Puerto Rico or the Virgin Islands. We also exclude tweets without

precise location information (i.e., less precise than municipality/county level). Our

final sample comprises tweets with exact coordinates (MX: 3%, US: 3%), neighbor-

hood or point of interest (poi)-level precision coordinates (MX: 2%, US: 2%), and

city-level precision coordinates (MX: 95%, US: 94%).

2. Language: For each country, only tweets written in the primary native language

(i.e., Spanish for Mexico and English for the United States) are included.

3. Source: A major concern regarding the reliability of Twitter data is that many

tweets are automatically disseminated through APIs rather than individually cre-

ated by a human user. We thus restrict our sample to content that is posted through

the four main channels for human users: iPhone, Android, iPad, and Instagram.2

This excludes tweets generated through third-party APIs from platforms such as

Foresquare or CareerArc (approximately 1 percent of geolocated tweets in Mexico

and 7 percent in the United States).

To compute municipality- or county-level statistics, we follow a three-step procedure.

First, each tweet is assigned to a geographical unit (i.e., municipality or county) based on

its coordinate data. While this is straightforward for exact coordinates, we apply different

types of consistency checks to find the correct unit when coordinate information consists

of a bounding box at the city, poi, or neighborhood level.3

Next, we approximate the home municipality or county for each user. If users tweet

from more than one geographical entity (MX: 33% of users, US: 35% of users), we assign all

their tweets to the entity from which they tweeted the most. For users whose tweet counts

are equally divided among two or more entities (MX: 1%, US: 2%), we use the number of

tweets posted during non-work hours on weekdays as a tiebreaker. This procedure results

in the reassignment of 14 percent of tweets in Mexico and 12 percent of tweets in the

United States. Tweets that cannot be unambiguously assigned to a municipality through

this procedure are dropped (MX: 0.4%, US: 0.2%).

2For tweets posted through Instagram, we exclude all tweets that use the default text (”Just posted
a photo @...”) rather than a message specified by the user. Tweets posted through the Twitter website
are not included in our sample becuase they do not have any associated coordinates.

3In most cases, assignment to the geographical unit containing the centroid of the tweet’s bounding
box yielded correct results. However, particularly in the Mexican case, where the location precision for
tweets tends to be lower (and city-level precision as defined by Twitter refers to municipalities rather
than places within municipalities), we combine spatial joins with name matching to ensure that all tweets
are assigned to the correct entity.
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Figure 2: Data Extraction and Model Training Pipeline

Finally, data is aggregated at the municipality or county level using the unit-level sum,

mean, or median depending on the distribution of the underlying variables (for details,

see Section 2.3 and Appendix C). To give equal weight to all users irrespective of their

degree of activity, all tweet-level variables are first aggregated at the user level.

2.2 Survey Data

While many countries lack timely and spatially disaggregated information on educational

outcomes, such data are available for both Mexico and the United States, allowing us to

train and test a prediction algorithm in two different settings. Our main outcome variable

is years of schooling for both countries, but we also look at the share of adults holding

different educational degrees to better understand where in the educational distribution

our models work best (see Table D.1). We use data from the 2020 census for Mexico

and from the American Community Survey (2017–2021, 5-year estimates) for the United

States, meaning that outcomes for both countries are temporally closely aligned with
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our input features from 2021.4 Following Barro and J. W. Lee (2013), we approximate

county-level years of schooling for the US based on the proportion of the population

holding different educational degrees and the average years of schooling associated with

these degrees.5

Section C in the Appendix presents summary statistics on all outcome variables. In

the average Mexican municipality, 28 percent of the population holds a post-basic degree,

54 percent has graduated from secondary school, 76 percent has finished primary school,

and the average person has completed 7.8 years of schooling. The corresponding figures

in US counties are 23 percent with a bachelor degree, 54 percent with some college, 88

percent with a high school degree, and 13.3 years of schooling.6

2.3 Features

Our feature matrix comprises municipality-level information on (i) Twitter penetration,

(ii) Twitter usage, (iii) spelling mistakes, (iv) topics, (v) sentiment, and (vi) user net-

works (for a detailed overview, see Section C and D in the Appendix). In addition, we

also include population density estimates.7 To advance our understanding of the aspects

of people’s online behavior that are most predictive of human capital, we deliberately

focus on a limited number of interpretable features rather than, for example, using tweet

text embeddings. Importantly, the included features vary in how directly they capture

education. In contrast to previous satellite-based approaches, several of our indicators

are direct expressions of education (e.g., spelling mistakes, grammatical errors) or closely

linked to educational attainment (e.g., different topics) rather than reflecting only the

economic consequences of education. Nevertheless, other features such as Twitter pen-

etration, usage patterns, and network characteristics are related to both education and

broader socioeconomic conditions, meaning that our predictions partly capture regional

4The Mexican census data is publicly available at https://www.inegi.org.mx/datosabiertos/,
while data from the American Community Survey can be accessed at https://www.ers.usda.gov/

data-products/county-level-data-sets/county-level-data-sets-download-data/.
5Average years of schooling for a given county are computed using

∑
j hj Durj , where hj indicates the

the proportion of the population that has attained education level j and Durj indicates the corresponding
duration to attain level j. We use data from the Current Population Survey, specifically the 2021 Annual
Social and Economic (ASEC) Supplement, to compute estimates for Durj . In Mexico, this approximation
is not necessary because average years of schooling are included in the census data.

6MX: Estimates for years of schooling, primary and secondary completion are provided for the pop-
ulation aged 16 or more, while the share with post-basic education is defined for adults (i.e., over 18).
US: All education statistics refer to the population aged 25 or older.

7Population data is globally available; thus, its inclusion does not limit the external validity of
our approach. Population data is also necessary for the computation of tweet and user densities. A
model using only population estimates will serve as our benchmark against which the performance of our
approach is compared.
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Table 1: Summary statistics by education level for selected features

Mexico United States

Bottom 25% Top 25% All Bottom 25% Top 25% All

User density 0.23 0.86 0.47 0.79 2.49 1.45
Tweet density 1.94 16.70 7.00 12.03 45.14 24.40

Tweet length 68.75 72.88 69.94 77.09 82.05 80.86
Account age 5.03 6.34 5.67 6.67 7.51 7.06
Tweets per year 1,306.55 362.71 841.93 648.93 351.58 495.19
Favorites per tweet 5.02 1.34 3.76 1.52 2.14 1.73

Error total 24.60 23.54 25.28 15.23 13.14 13.87
Error grammar 0.17 0.15 0.17 0.65 0.47 0.55
Error typos 12.18 10.66 12.47 7.48 6.92 7.19

Topic science 1.84 1.92 1.87 1.58 1.82 1.69
Topic relationships 6.66 5.72 6.27 5.31 4.42 4.76

Sentiment positive 0.39 0.37 0.38 0.50 0.50 0.50
Offensive language 0.15 0.16 0.15 0.17 0.16 0.16

Network clos. centr. 0.06 0.31 0.16 0.28 0.42 0.34

Number of Areas 430 429 1,714 723 723 2,889

Municipality (MX) or county (US) averages for selected features by educational outcome. The bottom
25% and top 25% refer to the municipalities/counties in the lowest or highest quartile of years of schooling.
Only areas with at least one tweet are included. Features are not log transformed.

socioeconomic outcomes correlated with education. The implications of this are discussed

in detail in Section 3.5.

Twitter penetration data (4 features) consists of the total number of tweets and users

as well as the number of users and tweets relative to the population (referred to as user and

tweet densities). We further include general information on Twitter usage (11 features),

such as the average tweet length, the number of followers, the user mobility, the account

age, the number of emojis per tweet, or the share of tweets posted during work hours

or from an iPhone. To obtain estimates for the frequencies of different spelling mistakes

(MX: 23 features, US: 16 features), we use a Python wrapper for “LanguageTool”, an

open source grammar, style, and spell checker. LanguageTool is available in over 25

languages, including English and Spanish, and classifies the detected errors into different

categories such as grammar, typos, casing, punctuation, or style.8 We include the total

number of errors per 1,000 characters and the corresponding numbers for each category.

To determine the topics of each tweet (19 features), we use a pre-trained multi-label tweet

classification model (Ushio and Camacho-Collados, 2022). This allows us to estimate the

probability a given tweet is about a particular topic, such as news, celebrity, sports, or

science. Since no pre-trained tweet classification models are available in Spanish, we

8See https://dev.languagetool.org/languages for information on language availability.
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translate all Spanish tweets into English using a pre-trained model based on the Marian

NMT framework (Junczys-Dowmunt et al., 2018) to determine the topic distributions of

our Mexican tweets.9 A further group of inputs comprises features related to sentiments

(4 features), such as the share of tweets with negative or positive sentiments, offensive

language, or hate speech. They are generated using pre-trained classification models for

Spanish and English tweets.10 Finally, we also add network indicators (4 features), such as

degree and closeness centrality. For this purpose, we use quotes and mentions to construct

a user-to-user network and subsequently aggregate this network to the municipality or

county level. We take the log of right-skewed features and standardize all features before

training.11

To address potential problems related to sparse or noisy data in areas of low population

density, we develop a procedure that allows our model to learn from spatial neighbors.

For each unit (i.e., municipality or county), we create a cluster consisting of the focal

unit and all its spatial neighbors, and compute cluster-level estimates for each of our

features. We use this information about Twitter usage in the broader area around each

unit in three ways: First, we add the cluster-level estimates as additional inputs to our

feature matrix (i.e., for each unit and measure, we include both unit- and cluster-level

values). Second, we use cluster-level features to impute missing values in units without

tweets using an elastic net regression model. This provides estimates for features that

cannot be observed in the absence of tweets, and is necessary as most machine learning

algorithms cannot handle missing values. Third, in units with fewer than 5 tweets, we

replace extreme outliers with imputed values using the same imputation procedure.12

Table 1 shows the mean of selected features by educational level for both countries

(see Section C in the Appendix for complete summary statistics). This simple inspection

already reveals a strong correlation between Twitter features and educational outcomes.

In both countries, user and tweet density is markedly higher in places with more educated

populations. Similarly, users in more educated areas tend to write longer tweets, make

fewer errors, and talk about different topics (e.g., science rather than relationships). On

the other hand, users in less educated areas tweet more actively.

9The model is provided via the HuggingFace library: https://huggingface.co/docs/

transformers/model_doc/marian.
10The classification models are provided by the same library used for the topic classification above.
11Appendix D documents which variables are log-scaled. Following Stahel (2000), we use log(x+ c) to

deal with zeros, with x as the values of a particular feature and c = Q2
0.25 /Q0.75, where Q0.25 and Q0.75

are the first and third quartiles based on feature values x > 0.
12Extreme outliers are defined as values that are lower than Q0.25−3 IQR or higher than Q0.75+3 IQR,

with Q0.25 and Q0.75 as the first and third quartiles and IQR as the interquartile range.
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2.4 Training and Evaluation

To train our models, we use a stacking regressor combining five machine learning algo-

rithms: (i) elastic net regression, (ii) gradient boosting, (iii) support vector regression,

(iv) nearest neighbor regression, and (v) a feed-forward neural network (i.e., a multi-

layer perceptron). We use cross-validated grid search to tune the hyperparameters of

each model. The performance of the final stacking regressor is evaluated using five-fold

cross-validation. This procedure is known as nested cross-validation. We report the cross-

validated R2 for each fold as well as an overall R2 obtained by combining all cross-validated

predictions, where R2 represents the coefficient of determination.13

3 Results

3.1 Main Results

Our final model is able to account for 70 percent of the variation in years of schooling in

Mexican municipalities and 65 percent in US counties (see Figure 3). Population-weighted

performance estimates are even higher, reaching an R2 of 0.85 in Mexico and of 0.70 in the

United States.14 A closer look at the predictive power for different educational degrees

reveals substantial variation in model performance in both countries.

In Mexico, we report an R2 of 0.69 for the share of the population holding a post-basic

degree (i.e., high school or more), an R2 of 0.64 for the corresponding share with a sec-

ondary degree, and an R2 of 0.61 when aiming to predict the prevalence of primary school

completion. Differences are even more pronounced in the United States, where our model

captures 70 percent of the variation in the percentage of adults that hold a bachelor’s

degree, 62 percent for the share that went to college, and 50 percent when focusing on

high school completion. This suggests that Twitter data is particularly informative about

higher education levels and less sensitive to differences at the lower end of the education

distribution. This pattern is likely driven by selection into platform usage, as more edu-

cated populations are more likely to use Twitter and generate sufficient data for reliable

predictions.

Among the five included models, gradient boosting and support vector regression

perform best and, accordingly, receive the highest weights in the final stacking regressor

(see Figure A.1 and Table A.1 in the Appendix). The neural network and the nearest

neighbor regressor, on the other hand, perform rather poorly, achieving a lower predictive

13R2 = 1−
∑

(yi−ŷi)
2∑

(yi−ȳ)2 , where yi are observed values, ŷi are predictions, and ȳ is the observed mean.
14Population weights are not taken into account during training.
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Figure 3: Performance for different educational outcomes
Model performance results for different educational outcomes in Mexican municipalities (blue) and US
counties (red). All models are evaluated through five-fold cross-validation. Boxplots show the median
(solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as the minimum &
maximum (whiskers) for the R2 across validation folds for each outcome and country. The table on the
right presents the R2 based on out-of-sample predictions for the full data sets (stacked across folds).
Population-weighted R2 are presented in parentheses.

power than the simple elastic net model (i.e., a regularized linear model). For all outcomes,

the ensemble of all models outperforms the best-performing individual model, highlighting

the benefits of stacking.

As Figures 5a and 5b show, our model produces the attenuated predictions that are

typical for continuous outcomes (Ratledge et al., 2022), meaning that, on average, esti-

mates are too high in low-education and too low in high-education areas.15 This pattern

also becomes apparent when comparing maps of true and predicted years of schooling (see

Figures 4a and 4b). While spatial patterns look very similar for the two measures, they

are slightly less fine-grained in the prediction maps.

15The regression line in Figure 5 and Appendix Figure A.2 does not take population weights into
account. The fact that there are many sparsely populated areas at the lower, and few, but very populous
areas at the higher end of the education distribution, creates the illusion that the line does not fit the
data.
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(a) Predictions for Mexico

(b) Predictions for the United States

(c) Prediction Error

Figure 4: Maps of true vs. predicted years of schooling
Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions
from all folds. In Figure 4c, red indicates overprediction and blue underprediction of true values.
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(a) Mexico (b) United States

Figure 5: True vs. predicted years of schooling
Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions
from all folds. Bubble size is proportional to the population in each unit. R2 and population weighted
R2 shown. The line indicating the best linear fit is not population-weighted.

3.2 Robustness and Generalizability

To assess the reliability of our predictions, we quantify uncertainty at two levels. First, the

boxplots in Figure 3 show variation in model performance across different cross-validation

folds, indicating relatively stable performance with modest variation for most outcomes.

Second, we assess prediction uncertainty at the unit level by re-running the full cross-

validation procedure with different random fold assignments (see Appendix Section A.5 for

details). We find that prediction uncertainty is generally higher in Mexican municipalities

than in US counties, likely reflecting the larger underlying variance in years of schooling

in Mexico. Within both countries, uncertainty is substantially higher in municipalities

or counties with smaller populations, fewer Twitter users, and greater reliance on spatial

imputation (Figures A.8 and A.9). These patterns closely mirror those of prediction

errors (Figure A.10), and both uncertainty and errors exhibit spatial clustering (Figures 4c

and A.8).

We also assess the spatial generalizability of our approach. To this end, we conduct

leave-one-state-out cross-validation (e.g., Breen et al., 2025; Chi et al., 2022), where mod-

els are trained excluding all municipalities or counties from one state at a time and then

used to predict outcomes in the held-out state. This tests whether the model can gener-

alize not only to unseen municipalities or counties, but to entirely new geographic areas

13



with potentially different socioeconomic contexts. In line with expectations and previous

research, this more stringent test of spatial transferability yields lower performance esti-

mates than our main five-fold cross-validation (Figures A.5 and A.6). Yet, performance

remains strong, with unweighted R2 for years of schooling of 0.57 in Mexico and 0.59 in

the United States, and population-weighted R2 of 0.79 and 0.69, respectively.

Finally, we assess temporal generalizability. Given the substantial changes in Twitter’s

data accessibility and user composition since our data collection period (Özturan et al.,

2025; Nutakki et al., 2025; Robertson, 2023), we examine whether our 2021 Twitter

data remain predictive of more recent educational outcomes. For the United States,

we use updated data from the most recent American Community Survey (2019-2023

compared to 2017-2021) to re-evaluate our models. Comparable updated data are not

yet available for Mexico (most recent census: 2020, which we already use in our main

analysis). Performance is very similar across all outcomes with declines of 0-2 percentage

points compared to our main estimates (Figure A.7). For years of schooling, we report

an R2 of 0.64 and a population-weighted R2 of 0.69. This stability suggests that social

media data can provide reliable predictions even when outcome data extend beyond the

data collection period, likely reflecting the slow-moving nature of educational attainment.

3.3 Feature Importance

As our model is based on a limited number of interpretable inputs (see Sections C and

D in the Appendix), we can explore how important various types of features are to the

success of our approach. Figure 6 shows how different groups of features perform on their

own. A model using only population data serves as a benchmark and achieves an R2 of

0.48 for Mexico and 0.34 for the United States. Simple Twitter penetration data, that is,

user and tweet densities or counts, already outperforms the population model, with R2

values of 0.57 for Mexico and 0.36 for the United States. Particularly in Mexico, knowing

where people tweet is thus more informative about human capital concentration than

knowing where people live.

The performance of usage statistics, i.e., features such as the average tweet length or

the number of followers, is high in both countries, accounting for 55 to 58 percent of the

variance in educational outcomes. The same is true for topic variables, which reach an R2

around 0.5 in both countries. Error and network statistics, on the other hand, seem to

be much more strongly related to education in Mexico (R2 of 0.55 for errors and 0.51 for

networks) than in the United States (R2 of 0.42 for errors and 0.34 for networks). Finally,

sentiment features are the only group of variables that fails to surpass the benchmark
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Figure 6: Performance of feature subgroups
Performance of feature subgroups for Mexico (blue) and the United States (red): Population (2x4 features,
i.e., 4 at the unit level and 4 at the cluster level), Twitter penetration (2x4 features), usage statistics (2x11
features), spelling mistakes (MX: 2x23 features, US: 2x16 features), topics (2x19 features), sentiment (2x4
features), and networks (2x4 features), as well as all features at the unit level (i.e., municipality or county)
and all features at the cluster level (i.e., including spatial neighbors). All models are evaluated through
five-fold cross-validation. Boxplots show the median (solid line), mean (dotted line), the 20th & 80th
percentile (box limits), as well as the minimum & maximum (whiskers) for the R2 across validation folds
for each outcome and country. The outcome is years of schooling in all models.

model. We can also evaluate how our model benefited from including cluster-level features

(see Figure 6). When limiting ourselves to unit-level features, we report R2 values of 0.63

(MX) and 0.56 (US), as opposed to 0.70 (MX) and 0.65 (US) for the full model.16 Thus,

exploiting information from spatial neighbors is critical to the predictive power of our

models. Overall, the performance of no single group of features comes close to that of the

overall model, suggesting that the different inputs are complementary.

To better understand these complementarities, we use SHAP (SHapley Additive ex-

Planations) to estimate marginal contributions (Lundberg and S.-I. Lee, 2017). This

approach is based on cooperative game theory (Shapley, 1953) and allows to compute

importance scores for different features and feature groups (see Appendix A.2). When

looking at the contributions of individual Twitter features, the user density emerges as

the single important predictor in the majority of models (i.e., models for different coun-

tries and educational outcomes). It is the most important feature in five models (US:

4, MX: 1) and the second most important in the remaining (MX: 3). The importance

16This provides a lower bound for the true benefit of exploiting spatial information as cluster-level
features are also used to impute missing values and extreme outliers.
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of other features varies more strongly between countries, but topics such as sports, sim-

ple usage statistics including the tweet length or the account age, as well as network

closeness centrality (only US), tend to be highly predictive too. When the SHAP values

are aggregated into feature groups similar to Figure 6, we observe that the SHAP-based

feature importance ranking closely resembles the ranking based on group-specific model

performance.17

3.4 Performance Heterogeneity

We now explore how our model is affected by the limited number of tweets in sparsely

populated areas (Figure 7). In line with expectations, performance is substantially higher

when limiting the evaluation to municipalities or counties with more tweets or users. This

relationship is even more pronounced when looking at different population thresholds.

Particularly in Mexico, model performance increases drastically if we exclude smaller

municipalities, where both input and output data is likely to be more noisy. This is

consistent with finding that, in both countries, the population-weighted R2 is substantially

higher than the unweighted R2 for all outcomes.

It is also informative to look at performance by the amount of data we use to make

the predictions. For our main analyses, we streamed Twitter data for two months, and

used millions of tweets to construct municipality or county-level indicators. To see if

similar results can be achieved with a shorter data collection period, we re-run the entire

feature engineering and model training procedure on different subsets of our data. As

Figure 8 shows, drastically shortening the data collection period only marginally reduces

performance. This is especially true for Mexico, where one day of tweets already yields

an R2 of more than 0.65. In the US, on the other hand, it takes about week of Twitter

data to account for 60 percent of the variation in county-level education outcomes. As

the curves for both countries flatten out almost completely after a few weeks, extending

the data collection period beyond two months is likely to yield only negligible additional

performance gains.

17Aggregations are the sum of absolute SHAP values (see Figure A.3). Feature importance rankings
show high stability across cross-validation folds. Spearman rank correlations are ρ = 0.69 for Mexico
and ρ = 0.81 for United States, and the most important feature overall ranks first in all folds for both
countries (see Appendix Section A.2 for details).

18Standard errors (shaded area) are computed using
√

4r2(1−r2)2(n−k−1)2

(n2−1)(n+3) , where n is the sample size

and k is the number of features (Cohen et al., 2013).
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(b) MX: User count
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(c) MX: Population count
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(d) US: Tweet count
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(e) US: User count
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(f) US: Population count

0 4500 9000 13500 18000 22500 27000 31500 36000 40500
Population cutoff

0.64

0.65

0.66

0.67

0.68

0.69

0.70

0.71

Cr
os

sv
al

id
at

io
n 

r2

0

10

20

30

40

50

60

70

80

90

100

Sh
ar

e 
of

 in
clu

de
d 

un
its

Figure 7: Performance heterogeneity
Performance heterogeneity by user, tweet, and population count for Mexican municipalities (blue) and
US counties (red). The solid line shows the R2 (including standard errors) for units (municipalities or
counties) above different tweet, user, or population count cutoffs.18 The dashed line shows the proportion
of units included at each cutoff.

(a) Included weeks

0 1 2 3 4 5 6 7 8 9
Weeks of data collection

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Cr
os

sv
al

id
at

io
n 

R
2

0

20

40

60

80

100

Sh
ar

e 
of

 u
ni

ts
 w

ith
ou

t t
we

et
s

(b) Included days
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Figure 8: Performance by data collection period
Model performance for shorter data collection periods for Mexican municipalities (blue) and US counties
(red). The value for 0 weeks/days corresponds to an R2 of our baseline model using population data
only. Standard errors are computed using the same formula as reported in Figure 7.
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3.5 Downstream Performance

In addition to being directly useful to better understand local patterns in development

outcomes and target interventions accordingly, predicted measures may also serve to study

relationships with other variables. Using wealth data for Mexico and income data for the

United States (see Appendix Table D.1), we thus explore how our Twitter-based indi-

cator performs in downstream regression tasks. The fact that machine-learning-derived

indicators are noisy measures gives rise to several potential biases that can compromise

such applications. If edu is the true distribution of the indicator we predicted as êdu

(e.g., years of schooling), and econ is another variable whose relationship to edu we wish

to study (e.g., wealth), three types of measurement error may occur (see simulations in

Appendix Figure B.1):

1. Attenuation bias: A random measurement error in êdu will dilute the correlation

between edu and econ. This results in an attenuation bias when regressing econ

on êdu, but not in the opposite specification, and decreases precision in both cases

(see, e.g., Fuller, 1987).

2. Berkson-type error: A bias that has only recently gained attention (see Ratledge

et al., 2022) arises when measurement errors are correlated with edu. The typical

behavior of machine learning models is to overpredict for low values and underpre-

dict for high values, a pattern that is very apparent in our application, where the

correlation between the prediction error (i.e., êdu - edu) and edu amounts to about

-0.6. This does not affect the correlation between edu and econ, but it distorts co-

efficients in downstream regressions. Specifically, it leads to a downward bias when

êdu is used as the outcome variable, and to an upward bias when it acts as the

explanatory variable.

3. Correlated learning: If the features used to predict êdu contain wealth or income-

related information, our model might exploit the correlation between econ and edu

to make better predictions. Given that some of our features, such as Twitter pene-

tration, usage and network features, are likely related to both education and broader

socioeconomic conditions, this is to be expected in our setting. Indeed, our feature

matrix is almost as predictive of economic outcomes (R2 = 0.64 for wealth in Mexico

and R2 = 0.62 for income in the US) as of education.19 This creates an artificially

19This is substantially higher than a model using education only (years of schooling) for the prediction
(MX: 0.57, US: 0.50), suggesting that our feature matrix indeed contains wealth and income-related
information that is independent of education levels. Estimates are based on re-running the same machine
learning procedure we use to predict education for wealth and income.
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strong correlation between êdu and econ. When using êdu as the dependent vari-

able, this only leads to overoptimistic standard errors. If êdu is the independent

variable (and edu and econ are positively correlated), it additionally induces an

upward bias for the point estimate.

(a) MX: λq = 0 (b) MX: λq = 1 (c) MX: λq = 3

(d) US: λq = 0 (e) US: λq = 1 (f) US: λq = 3

Figure 9: Effects of Berkson-type error correction
True vs. predicted values with correction of the Berkson-type error for Mexican municipalities (blue) and
US counties (red). For the correction, we apply an adjusted loss function in the final ridge regression
model that performs the stacking. Following Ratledge et al. (2022), we add an additional penalty term
to the standard loss function of the ridge regression, which consists of the mean squared error (MSE)
plus an L2 penalty. The adjusted loss function is thus MSE + λlL2 + λqQbias, where λq is the strength
of the additional penalty and a hyperparameter that can be tuned. Qbias is the maximum of the squared
quintile-specific biases, equal to maxj(E[ŷi − yi|yi ∈ Qj ]

2), where Qj ∈ {Q1, ... , Q5}, and ŷi is the
predicted y for observation i. The figure shows the effect of three λq parameters on the prediction bias.
Solid lines indicate the best linear fit of each model, while dashed black lines represent the expected fit
without bias (β1 = 1).

With these considerations in mind, we now compare the downstream correlations

(Appendix Figure B.2) and regression results (Table 2) of êdu and econ with the true cor-

relations captured by edu. As Figure B.2 in the Appendix shows, the predicted education

indicator consistently understates true correlations, suggesting that the attenuation bias
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dominates over a potential bias due to correlated learning. Table 2 further shows that the

slope of the regression coefficients is considerably underestimated for all outcomes when

using êdu as the dependent variable of the regression and slightly overestimated in the

reverse specification, a pattern that is consistent with a Berkson-type error. Hence, it

appears that the correlation estimates are mainly affected by attenuation, while biases in

regression coefficients are largely driven by a Berkson-type error.

Table 2: Downstream regression results

Mexico United States

Years of
Schooling

Post-
Basic

Secondary Primary
Years of
Schooling

Bachelor College
High
School

βt : edu ∼ econ
0.740
(0.014)

0.661
(0.015)

0.703
(0.014)

0.728
(0.014)

0.692
(0.013)

0.707
(0.013)

0.655
(0.013)

0.487
(0.016)

βp : êdu ∼ econ
0.549
(0.013)

0.499
(0.014)

0.526
(0.012)

0.516
(0.012)

0.496
(0.011)

0.526
(0.012)

0.470
(0.011)

0.320
(0.011)

βc : êduc ∼ econ
0.748
(0.017)

0.651
(0.018)

0.744
(0.018)

0.687
(0.016)

0.699
(0.016)

0.727
(0.017)

0.661
(0.018)

0.362
(0.013)

βt − βp
-0.191
(0.012)

-0.161
(0.011)

-0.177
(0.012)

-0.212
(0.014)

-0.196
(0.011)

-0.181
(0.012)

-0.185
(0.011)

-0.167
(0.012)

βt − βc
0.008
(0.014)

-0.010
(0.013)

0.041
(0.015)

-0.042
(0.016)

0.007
(0.014)

0.021
(0.016)

0.005
(0.017)

-0.125
(0.014)

βt : econ ∼ edu
0.740
(0.014)

0.661
(0.015)

0.703
(0.014)

0.728
(0.014)

0.692
(0.013)

0.707
(0.013)

0.656
(0.013)

0.488
(0.016)

βp : econ ∼ êdu
0.794
(0.018)

0.717
(0.019)

0.826
(0.019)

0.863
(0.019)

0.765
(0.017)

0.738
(0.017)

0.767
(0.018)

0.640
(0.023)

βc : econ ∼ êduc
0.577
(0.013)

0.539
(0.015)

0.564
(0.013)

0.646
(0.015)

0.535
(0.012)

0.520
(0.012)

0.443
(0.012)

0.515
(0.019)

βt − βp
0.054
(0.012)

0.056
(0.012)

0.123
(0.013)

0.135
(0.014)

0.072
(0.015)

0.031
(0.014)

0.111
(0.014)

0.152
(0.025)

βt − βc
-0.162
(0.010)

-0.122
(0.011)

-0.139
(0.011)

-0.083
(0.012)

-0.157
(0.013)

-0.187
(0.012)

-0.212
(0.012)

0.028
(0.024)

N 2,457 2,457 2,457 2,457 3,140 3,140 3,140 3,140

The predictions for different educational outcomes, referred to as edu, are denoted as êdu, and

econ is wealth for Mexico and income for the United States. For êduc, we apply a Berkson
error correction with λq = 3 for years of schooling and λq = 15 for all other outcomes (i.e.,

all percentages). Results are reported in standard deviations (êdu and êduc are standardized
using the distribution of edu). βt − βp is the original bias and βt − βc is the bias using the
predictions based on the adapted loss function. Education is the dependent variable in the
top panel and the independent variable in the bottom panel. Standard errors in parentheses.

While the attenuation bias and correlated learning cannot be avoided in most appli-

cations, it is possible to refine our model in a way that minimizes the Berkson error.

Following Ratledge et al. (2022), we add a further penalty term for a quintile-specific bias

to the loss function of our final stacking model. If the weight given to this penalty is
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sufficiently high, the tendency to understate high values and overstate low values effec-

tively disappears (see Figure 9), albeit at the cost of reduced overall performance, with a

decrease in the R2 by about 10 percentage points. Using this new set of predictions (see

Table 2), the bias in the top panel (êdu ∼ econ) becomes negligible for most outcomes.20

In the bottom panel (econ ∼ êdu) the direction of the bias is reversed as the attenuation

bias begins to dominate. This suggests that when appropriately modeled, predicted indi-

cators can yield accurate estimates in downstream regression tasks, provided they serve

as the outcome rather than the treatment variable. Fortunately, the former scenario is

more common, as it enables the evaluation of interventions or policy changes.

4 Conclusion

Our results show that human capital can be accurately inferred from Twitter data using

machine learning. We are able to account for 70 percent of the variation in years of school-

ing in Mexico and 65 percent in the United States. This is substantially higher than the

performance reported in previous attempts to predict human capital, and comparable to

the effectiveness of satellite data in predicting wealth. As only a few days of Twitter data

are needed to achieve a good performance and the natural language processing tools we

use for feature preparation support many different languages, our approach has substan-

tial potential for broader application. In addition, despite the lower Twitter penetration,

our model tends to perform better for Mexico than for the United States, suggesting that

the method is also relevant to less affluent regions with lower levels of social media usage.

In addition to being directly useful for understanding spatial patterns and targeting

interventions, predicted indicators also have the potential to advance scientific research

by providing inputs for downstream inference tasks. This paper highlights that such

applications are not without caveats. Our data and simulations show that estimates in

downstream regression tasks tend to be subject to several biases. We further demonstrate

that these biases can be corrected using an adapted loss function (see Ratledge et al., 2022)

if the predicted indicator serves as the dependent variable. If carefully tuned, machine-

learning-derived indicators can thus become a valuable data source to study effects on

outcomes for which ground truth data are unavailable. However, more research is needed

to better understand the empirical relevance of each of the biases, and experiment with

the most effective ways to address them.

20The bias becomes insignificant for 5 out of 8 outcomes. The correction appears to be particularly
effective for outcomes that have a higher initial R2. In the last model (high school), which is also the
one with the lowest initial R2, the penalized loss function achieves only a limited slope correction with
λq = 15 (not shown) and the regression is thus unable to recover the true effect.
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These contributions notwithstanding, three important limitations should be acknowl-

edged. First, we report performance of our approach for a specific platform at a specific

point in time, namely Twitter in 2021. Twitter (now X) data has since changed substan-

tially, with tighter restrictions and higher costs for large-scale data collection. In parallel,

the platform has undergone shifts in governance, user composition, and posting behavior

(Özturan et al., 2025; Nutakki et al., 2025; Robertson, 2023). While the data we use re-

main highly predictive of today’s education levels, real-time prediction or tracking changes

over time would require recalibrating the model to the current Twitter environment or

to a different platform. Second, our evaluation is limited to two countries. Although

the United States and Mexico differ substantially in economic development, language,

and Twitter penetration, we cannot make precise predictions regarding transferability to

other countries, especially those with very low platform adoption. The strong performance

in Mexico, which has relatively low Twitter penetration compared to other countries in

the Americas, suggests our approach may be applicable beyond high-penetration contexts,

but further research is needed to confirm this. Third, within countries, Twitter data is

less informative at the lower end of the education distribution and in less populated ar-

eas with lower Twitter penetration. This likely reflects that Twitter use is concentrated

among the highly educated, making the platform less suited for distinguishing between

low and medium education levels. Including data from other platforms with less selective

usage patterns may be a promising avenue for future research.

Looking forward, recent advances in large language models present both interesting

possibilities and challenges for our approach. On the one hand, LLMs could enable more

sophisticated evaluation of tweet content, including advanced error detection, zero-shot

topic classification, and text embeddings as features, potentially increasing predictive

performance and facilitating multi-language integration.21 On the other hand, as social

media users increasingly adopt AI writing assistants, education signals from indicators

such as spelling errors may become diluted. Nevertheless, most feature groups, such as

penetration, usage statistics, network structures, and topics, should remain informative,

and differential AI adoption across demographic groups (Alikhani, Harris, and Patnaik,

2025; OECD, 2024) may create new predictive signals.

Overall, our results demonstrate that social media data can provide accurate spatially

granular estimates of educational attainment. As social media use continues to expand

globally, this approach offers an increasingly promising complement to traditional survey

methods for measuring human capital development.

21Note, however, that costs under current commercial API pricing remain prohibitively high for pro-
cessing millions of tweets.
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Supplementary Information

A Model Performance
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Figure A.1: Performance of individual models
Performance of individual models considered in the final stacking model for years of schooling in Mexico
(blue) and the United States (red). All models are evaluated through five-fold cross-validation. Boxplots
show the median (solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as the
minimum & maximum (whiskers) for the R2 across validation folds for each outcome and country.
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(a) MX: Post-basic degree (b) MX: Secondary degree (c) MX: Primary degree

(d) US: Bachelor (e) US: Some College (f) US: High school

Figure A.2: True vs. predicted values for secondary outcomes
Predicted values for all Mexican municipalities (blue) and US counties (red) are obtained by combining
out-of-sample predictions from all folds. Bubble size is proportional to the population in each unit. R2

and population weighted R2 shown. Line indicating best linear fit is not population weighted.
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A.2 Feature Importance

We compute SHAP values from the final stacking regressor, which combines predictions

from five base models (elastic net, gradient boosting, support vector regression, near-

est neighbor regression, and neural network) and is thus representative of our overall

approach. SHAP values are calculated for each municipality or county based on out-

of-sample predictions from cross-validation. We present results for the most important

individual features (Figure A.3a) as well as per group aggregations (Figure A.3b) based

on sums of absolute SHAP contributions. Note that while for signed SHAP values, the

(a) Most important features

0.00 0.05 0.10 0.15 0.20 0.25
Absolute SHAP values

Population density
User density

Cluster: User density
User count

Tweet density
Cluster: Topic celebrity

Cluster: Topic youth
Cluster: Topic travel
Cluster: Population

Cluster: Population density
Cluster: Topic sports
Cluster: Account age

Tweet count
Cluster: Listed count

Cluster: Error diacritics
Cluster: Following count

Cluster: Share quotes
Cluster: Share verified

Cluster: Topic news
Offensive language

0.00 0.02 0.04 0.06 0.08 0.10
Absolute SHAP values

User density
Network clos. centr.

Population density
User count

Cluster: Favorites per tweet
Cluster: Listed count

Cluster: Error total
Cluster: Topic sports

Cluster: Topic daily life
Account age

Cluster: Tweet length
Cluster: Population density

Cluster: Account age
Topic sports

Cluster: Network clos. centr.
Tweet length

Topic relationships
Listed count

Cluster: Tweets per year
iPhone share

(b) Aggregation by feature subgroups
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Figure A.3: SHAP value feature importance for stacking regressor
Most important features and feature subgroups in the stacking regressor for Mexico (blue) and the United
States (red). The displayed feature importance is based on SHAP (SHapley Additive exPlanations) values,
an approach based on cooperative game theory (Lundberg and S.-I. Lee, 2017). In Figure A.3a, the 20
most important features are shown for each country, ranked according to the absolute SHAP value. Figure
A.3b presents the sum of absolute SHAP values for 7 different feature groups. Note that due to the high
correlation between some features, estimates should be interpreted with caution.
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sum of feature contributions equals the difference between the individual prediction and

the average prediction across all observations, this “additivity property” does not hold for

absolute values (Figure A.3a) or sums of absolute values (Figure A.3b). Our presented

measures should thus be interpreted as heuristic summaries of predictive contribution

rather than formal decompositions.

While SHAP is specifically designed to assess contributions of correlated individual

features, results could still be unstable under very high multicollinearity. We assess ro-

bustness in two steps. First, we examine pairwise feature correlations in our feature

matrices, finding that only a very limited number of feature pairs are highly correlated

(a) Distribution of pairwise correlations
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(b) High-correlation pairs by feature group

0 2 4 6 8 10 12
Number of Pairs with |r| > 0.8

Networks

Sentiments

Topics

Errors

Usage statistics

Twitter penetration

Population

12/28

0/28

2/703

0/1035

4/861

4/28

0/6

0 2 4 6 8
Number of Pairs with |r| > 0.8

Networks

Sentiments

Topics

Errors

Usage statistics

Twitter penetration

Population

9/28

1/28

3/703

1/496

5/861

4/28

1/6

Figure A.4: Feature correlation analysis
Pairwise correlations between features for Mexico (blue) and the United States (red). Figure A.4a shows
the distribution of absolute correlation coefficients across all feature pairs. Vertical dashed lines indicate
thresholds at |r| = 0.7, 0.8, and 0.9. Figure A.4b displays the number of highly correlated feature pairs
(|r| > 0.8) within each feature group, shown as fractions of total possible pairs. High correlations occur
predominantly within network groups, while all other groups show few or no high-correlation pairs in
both countries.
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(see Figure A.4), with mean absolute correlations of |r| = 0.16 for Mexico and |r| = 0.15

for the United States. Second, to directly assess whether feature importance rankings are

stable across different model specifications and data samples, we examine the consistency

of SHAP values across cross-validation folds. Each fold represents a different subsample

of municipalities/counties and a distinct model configuration with fold-specific hyperpa-

rameters and weights. Feature importance rankings prove remarkably stable, with mean

Spearman rank correlations of ρ = 0.69 for Mexico and ρ = 0.81 for the United States. In

both countries, the most important feature overall also consistently ranks first across all

five folds. Among the top five features, 92% rank within the top five in each individual

fold for Mexico and 68% for the United States, while all of them rank within the top ten

in both countries.
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A.3 Leave-One-State-Out Cross-Validation

(a) Years of schooling
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Figure A.5: Leave-one-state-out cross-validation results for Mexico
Predicted values from leave-one-state-out cross-validation where models are trained excluding all munic-
ipalities from one state at a time and evaluated on the municipalities of the held-out state. Bubble size
is proportional to population. R2 and population weighted R2 shown. Line indicating best linear fit is
not population weighted.
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(a) Years of schooling
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(b) Bachelor degree
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Figure A.6: Leave-one-state-out cross-validation results for the United States
Predicted values from leave-one-state-out cross-validation where models are trained excluding all counties
from one state at a time and evaluated on the counties of the held-out state. Bubble size is proportional
to population. R2 and population weighted R2 shown. Line indicating best linear fit is not population
weighted.
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A.4 Model Predictions for Future Outcomes

(a) Years of schooling
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Figure A.7: Future education outcome results for the United States
Predictions vs. true values based on a model retrained and evaluated using more recent American Com-
munity Survey data (2019–2023) compared to the main analysis (2017–2021). Bubble size is proportional
to population. R2 and population weighted R2 shown. Line indicating best linear fit is not population
weighted.
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A.5 Prediction Uncertainty

To assess the reliability of our predictions, we quantify prediction variability by repeatedly

re-running the full cross-validation procedure with different random fold assignments.

Specifically, we re-estimate the model 20 times using different random seeds for fold

construction and compute, for each municipality or county, the standard deviation of the

resulting out-of-sample predictions. This allows us to characterize prediction uncertainty

at the unit level and examine how it correlates with observable characteristics.22

Uncertainty is generally higher in Mexican municipalities than in US counties (Fig-

ure A.8). This likely reflects the higher variance in years of schooling in Mexico (SD =

1.49 for Mexico vs. SD = 0.66 in the US). Within both countries, variability is substan-

tially higher in less populous municipalities or counties, in areas with fewer Twitter users

and tweets, and where the model relies more heavily on spatial imputation (Figure A.9).

In Mexico, prediction variability additionally increases at lower levels of educational at-

tainment, a pattern that is much less pronounced in the United States.

Figure A.8: Prediction uncertainty for Mexican municipalities and US counties
Prediction uncertainty for years of schooling, measured as the standard deviation of predicted values
across repeated cross-validation re-runs, for each municipality in Mexico (left) and county in the United
States (right).

22This simple approach is consistent with our overall training setup and provides an easy-to-interpret
measure of prediction stability, but is computationally intensive due to repeated model re-estimation.
More recent approaches to predictive uncertainty estimation include Bayesian machine learning meth-
ods, quantile-based models, and conformal prediction (e.g., Maddox et al., 2019; Akrami et al., 2022;
Angelopoulos and Bates, 2021).
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(a) Mexico
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(b) United States
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Figure A.9: Correlates of prediction variability
Unconditional correlation between prediction uncertainty for years of schooling, measured as the standard
deviation of predicted values across repeated cross-validation re-runs, and selected characteristics of
Mexican municipalities and US counties.
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(b) United States
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Figure A.10: Correlates of prediction error
Unconditional correlation between absolute prediction errors for years of schooling and selected charac-
teristics of Mexican municipalities and US counties.
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Relatedly, we examine correlates of absolute prediction errors. Unsurprisingly, results

are similar to uncertainty, suggesting that areas with higher prediction variability also

tend to have larger prediction errors (see Figure A.10). Given that spatial clustering is

a key component of our data preparation pipeline, we also disaggregate performance by

imputation status. As expected, we find larger mean average prediction errors (MAE)

for areas that rely more heavily on imputed features. However, increases in MAE com-

pared to non-imputed areas are only 10 percent for the US and 20 percent for Mexico,

suggesting that predictions remain reasonably accurate even in these sparse-data contexts

(Figure A.11).

(a) Mexico
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Figure A.11: Model performance by imputation level
Mean Absolute Error (MAE) for predictions of years of schooling in Mexican municipalities (blue) and
US counties (red) grouped by imputation level. “No Imputation”: units with at least 5 tweets (complete
observed data); “Minor Imputation”: units with 1-4 tweets (outlier imputation based on spatial neigh-
bors); “Major Imputation”: units with 0 tweets (full imputation of all tweet content features based on
spatial neighbors). Lower MAE indicates better predictive performance.
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B Bias Correction

(a) Attenuation bias
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Figure B.1: Simulation of different types of biases in downstream regression tasks

Scatter plots and best linear fit for edu (blue) and êdu (red) with different types of measurement errors.
Arrows indicate the movement of typical points as a result of each measurement error. In the upper row,

edu (or êdu) is the outcome of the regression, while it features as the explanatory variable in the lower
row.
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Figure B.2: Correlation of observed and predicted education with wealth or income
Correlations between true and predicted educational outcomes and wealth in Mexico (blue) as well as
income in the United States (red). 95% confidence intervals shown.
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C Feature Statistics

Table C.1: Survey statistics by country

Variable Country Mean SD Min Median Max

Years of Schooling
MX 7.83 1.49 3.40 7.72 14.55

US 13.30 0.66 9.37 13.28 16.13

Post Basic Education MX 0.28 0.13 0.03 0.26 0.89

Bachelor Degree US 22.61 9.71 0.00 20.22 79.14

Secondary Education MX 0.54 0.14 0.12 0.54 0.95

Some College US 53.67 10.72 7.41 53.61 90.31

Primary Education MX 0.76 0.11 0.36 0.76 0.98

High School US 87.60 6.04 21.85 88.83 98.61

Population
MX 51,173.11 147,322.51 81.00 13,552.00 1,922,523.00

US 105,661.95 333,146.18 57.00 25,790.00 9,829,544.00

Wealth Index MX 0.68 0.12 0.07 0.70 0.94

Income US 57,455.86 14,582.81 22,901.00 55,143.50 160,305.00
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Table C.5: Sentiment statistics by country

Variable Country Mean SD Min Median Max

Sentiment negative
MX 0.16 0.12 0.00 0.16 0.95

US 0.16 0.08 0.00 0.17 0.91

Sentiment positive
MX 0.38 0.18 0.01 0.37 0.99

US 0.50 0.13 0.01 0.48 0.99

Hate speech
MX 0.04 0.03 0.01 0.04 0.42

US 0.05 0.02 0.01 0.04 0.33

Offensive language
MX 0.15 0.07 0.03 0.15 0.89

US 0.16 0.06 0.03 0.16 0.83

Table C.6: Network statistics by country

Variable Country Mean SD Min Median Max

Network in degree
MX 0.14 0.87 0.00 0.00 15.17

US 0.36 2.17 0.00 0.01 67.43

Network out degree
MX 0.14 0.79 0.00 0.00 14.65

US 0.36 1.91 0.00 0.01 56.15

Network clos. centr.
MX 0.16 0.18 0.00 0.00 0.55

US 0.34 0.16 0.00 0.40 0.68

Network pagerank
MX 0.00 0.00 0.00 0.00 0.06

US 0.00 0.00 0.00 0.00 0.05
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D Feature Descriptions

Table D.1: Survey indicator description

Label Description

Years of Schooling Average years of schooling in municipality (MX) or county (US) according to
census. We approximate years of schooling for the US by attainment statistics
(see main text)

Post Basic Education Share of population with post basic education

Secondary Education Share of population with secondary education

Primary Education Share of population with primary education

Wealth Index Index based on share of households that have 13 wealth related items according
to the Mexican census, sum across standardized items

Bachelor Degree Share of county level population with some college level education

Some College Share of population with a bachelor degree

High School Share of population with high school education

Income Income statistics provided by US census

Population Population counts according to census

Table D.2: Network indicator description

Label Description

Network in degree Number outgoing references measured by mentions and quotes (log scale)

Network out degree Number incoming references measured by mentions and quotes (log scale)

Network clos. centr. Pagerank for municipalities (MX) or counties (US) according to respective net-
work based on mentions and quotes (log scale)

Network pagerank Closeness centrality for municipalities (MX) or counties (US) according to re-
spective network based on mentions and quotes (log scale)
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Table D.3: Twitter penetration and usage indicator description

Label Description

Tweet count Number of tweets

User count Number of users

Share weekdays Share of tweets created during weekdays (Monday-Friday)

Share workhours Share of tweets created during workhours (Monday-Friday, 8:00am-4:00pm))

Follower count Median number of followers per user (log scale)

Following count Median number of friends per user (log scale)

Tweet count Median number of tweets per user (log scale)

User mobility Average number of municipalities (MX) or counties (US) users tweet from (log
scale)

iPhone share Share of tweets sent from an iPhone

Instagram share Share of tweets sent via Instagram (log scale)

Favorites per tweet Number of likes per tweet, median (log scale)

Tweets per year Median number of tweets per year (log scale)

Account age Age of average account

Table D.4: Twitter penetration and usage indicator description

Label Description

Account age Age of average account

Listed count Average number of public lists user is a member of (log scale)

Followers per following Number of followers divided by number of accounts a user follows, median (log
scale)

Share quotes Share of tweets that are quotes (log scale)

Share replies Share of tweets that are replies (log scale)

Share verified Share of verified users (log scale)

Tweet length Average number of characters per tweet (log scale)

Hashtags per tweet Average number of hashtags per tweet (log scale)

Mentions per tweet Average number of mentions per tweet (log scale)

Urls per tweet Average number of urls per tweet (log scale)

Emojis per tweet Number of emoji per tweet (log scale)
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Table D.5: Error indicator description (both countries)

Label Description

Error total Number of errors per character (log scale)

Error casing Casing error (log scale)

Error confusions Word confusions (log scale)

Error grammar Grammar error (log scale)

Error variants Errors regarding American and British English (log scale)

Error misc Miscellaneous error (log scale)

Error punctuation Punctuation error (log scale)

Error repetitions style Style error related to repetitions (log scale)

Error semantics Semantic error (log scale)

Error style Style error (log scale)

Error typography Typography error (log scale)

Error typos Typo (log scale)

Table D.6: Error indicator description (country-specific)

Label Description

Error noun agreement Noun verb agreement error (log scale)

Error verb agreement Verb subject agreement error (log scale)

Error norm change Deviation from linguistic norms (log scale)

Error collocations Collocation error (log scale)

Error compounding Compounding error (log scale)

Error context Context dependent error (log scale)

Error diacritics Errors regarding accents (diacritic marks, log scale)

Error expressions Incorrect expression (log scale)

Error misspelling Misspelling (log scale)

Error nonstandard Error related to non-standard English (log scale)

Error prepositions Error related to prepositions (log scale)

Error proper nouns Error related to proper nouns (log scale)

Error redundancy Redundancy in text (log scale)

Error redundancy Redundancy in text (log scale)

Error repetitions Repetition in text (log scale)
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Table D.7: Topic indicator description

Label Description

Topic arts & culture Share of tweets classified into the arts & culture topic (log scale)

Topic business Share of tweets classified into the business & entrepreneurs topic (log scale)

Topic celebrity Share of tweets classified into the celebrity & pop culture topic (log scale)

Topic daily life Share of tweets classified into the diaries & daily life topic (log scale)

Topic family Share of tweets classified into the family topic (log scale)

Topic fashion Share of tweets classified into the fashion & style topic (log scale)

Topic films Share of tweets classified into the films, tv & video topic (log scale)

Topic fitness & health Share of tweets classified into the fitness & health topic (log scale)

Topic food & dining Share of tweets classified into the food & dining topic (log scale)

Topic gaming Share of tweets classified into the gaming topic (log scale)

Table D.8: Topic indicator description

Label Description

Topic educational Share of tweets classified into the learning & educational topic (log scale)

Topic music Share of tweets classified into the music topic (log scale)

Topic news Share of tweets classified into the news & social concern topic (log scale)

Topic hobbies Share of tweets classified into the other hobbies topic (log scale)

Topic relationships Share of tweets classified into the relationships topic (log scale)

Topic science Share of tweets classified into the science & technology topic (log scale)

Topic sports Share of tweets classified into the sports topic (log scale)

Topic travel Share of tweets classified into the travel & adventure topic (log scale)

Topic youth Share of tweets classified into the youth & student life topic (log scale)

Table D.9: Sentiment indicator description

Label Description

Sentiment negative Average share of tweets with negative sentiment in contrast to positive and
neutral

Sentiment positive Average share of tweets with positive sentiment in contrast to negative and
neutral

Hate speech Score indicating hate speech, average (log scale)

Offensive language Score indicating offensive language, average (log scale)
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