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Abstract

Timely data on educational attainment at granular geographic levels remains scarce in
many countries, limiting evidence-based policy-making. Recent advances in machine
learning have enabled the use of non-traditional data sources like satellite imagery and
mobile phone records to measure development indicators. While these approaches have
been successful in predicting outcomes such as wealth, poverty, or population density,
previous attempts to predict educational attainment have achieved only modest accuracy.
A key challenge is finding data sources that directly reflect human capital rather than
its economic consequences. Here we show that language patterns and user behavior in
social media can explain up to 70 percent of the variance in regional educational attain-
ment. Our machine learning framework leverages linguistic features, user behavior, and
network characteristics from 25 million geolocated tweets from the United States and
Mexico. It performs particularly well in predicting higher education levels and maintains
a good performance even with limited data collection periods. These results show that
digital communication patterns can serve as reliable proxies for human capital. In light
of the rapid expansion of social media use around the globe, this represents a promising
approach to tracking educational outcomes in regions lacking granular and timely survey
data.



1 Introduction

Reliable data on key socio-economic outcomes enables policy-makers to make informed
decisions and promote societal development. However, many countries are plagued by a
pervasive lack of such data, limiting their ability to track progress and evaluate policies.
To address the problem, a growing body of literature uses alternative data sources such as
satellite imagery or phone records to bridge the existing gaps in data availability (Burke
et al., 2021). While previous studies have successfully predicted outcomes such as wealth,
income or population density, this paper proposes an innovative approach to measuring
human capital using geolocated Twitter data (now X).

We focus on educational attainment as our measure of human capital (Becker, 1964;
Mincer, 1974), and validate our approach with two countries that differ markedly in
language, economic development, and social media penetration: the United States and
Mexico. Specifically, we construct a set of interpretable measures of education at low
administrative units (municipality in Mexico and county in the United States) based on
over 25 million tweets. Our feature matrix includes basic Twitter penetration (e.g., user
density) and usage statistics (e.g., tweet length), text-based indicators on spelling mistakes
(e.g., frequency of grammatical errors), topics (e.g., share of tweets about science), and
sentiments (e.g., share of negative tweets), as well as network indicators (e.g., closeness
centrality). We train a stacking regressor combining five machine learning algorithms
— elastic net regression, gradient boosting, support vector regression, nearest neighbor
regression, and a feed-forward neural network — to predict educational attainment for
Mexican municipalities (N = 2,457) and US counties (N = 3,141). We apply grid search
to tune the relevant hyperparameters of each model, and evaluate the performance of the
final models using five-fold cross-validation.

Our predictions account for 70 percent of the variation in years of schooling in Mexican
municipalities and 65 percent in US counties. Where, how and what people tweet is thus
highly informative about human capital. Within both countries, Twitter data appears to
be particularly well-suited for distinguishing higher levels of education. For example, we
achieve an R? of 0.70 in predicting county-level shares of US adults holding a bachelor’s
degree, while the corresponding R? for the percentage with a high school degree is only
0.50. We observe a similar though less pronounced relationship for Mexico, with an R?
of 0.69 for the share with post-basic education and 0.61 for the percentage completing
primary education.

Our focus on a limited number of meaningful features also allows us to study which

(groups of) features are most predictive of educational outcomes. In most models, the user



density emerges as the single most important predictor of educational outcomes. Twitter
penetration features are particularly informative in Mexico, where they alone account
for 57 percent of the variation in educational outcomes, compared to 37 percent in the
US. Similarly, error and network features appear to be strongly related to education in
Mexico (R? = 0.55 and 0.51, respectively), but less so in the US (R? = 0.42 and 0.34,
respectively). General tweet statistics and topics have consistently high predictive power
in Mexico and the United States (R? between 0.5 and 0.6).

The main challenge to model performance arises in sparsely populated areas with low
Twitter penetration. Accordingly, the population-weighted R? for years of schooling is
0.85 for Mexico and 0.70 for the US (compared to 0.70 and 0.65 in our unweighted base
model). Similarly, restricting the evaluation sample to areas with at least ten users would
increase performance to 0.74 in Mexico and 0.68 in the US. We also explore how model
performance evolves depending on the data collection period, finding that we can achieve
relatively high predictive power with just three days of tweet data, namely an R? of 0.66
for Mexico and 0.58 for the United States.

Using wealth data for Mexico and income data for the US, we further explore how our
measure of human capital performs in downstream tasks by comparing regression results
based on predicted vs. ground truth measures of education. We find that slope coefficients
tend to be biased not only when using the predicted indicator as an independent variable,
but also when it acts as the dependent variable. The latter bias results from the typical
model tendency to overpredict for low values and underpredict for high values. When
using a loss function that penalizes quintile-specific biases (see Ratledge et al., 2022), the
bias disappears, and regression coefficients based on our predicted indicator become very
similar to their ground truth counterparts. Our simulations show that when appropriately
modeled, predicted indicators can produce correct estimates in downstream regression
tasks as long as they serve as the outcome and not the treatment variable.

This paper contributes to the recent literature exploring the combined potential of
non-conventional data sources and machine learning to measure and understand socio-
economic development. While a range of outcomes including wealth (Jean et al., 2016;
Blumenstock, Cadamuro, and On, 2015; Yeh et al., 2020; Aiken et al., 2022), population
density (Stevens et al., 2015; Wardrop et al., 2018), crop yield (Lobell, 2013; Burke
and Lobell, 2017; Sun et al., 2019), informal settlements (Kuffer, Pfeffer, and Sliuzas,
2016; Mboga et al., 2017), electricity access (Ratledge et al., 2022), and disease spread
(Wesolowski et al., 2012; Chang et al., 2021) have been accurately predicted using satellite
or phone data, previous attempts to infer human capital have been less successful. Head

et al. (2017) use satellite data to predict educational attainment in Rwanda, Nigeria,



Haiti and Nepal, achieving an average R* of ~0.55. The predictive power of other data
sources, such as Google Street View images (Gebru et al., 2017) or Wikipedia articles
(Sheehan et al., 2019), appears to be even lower, accounting for less than 40 percent
of the variation in educational outcomes. A key limitation of these approaches, is that
the underlying data does not contain any information on education itself, but only on
its economic consequences. We show that by using geolocated Twitter data and natural
language processing, we cannot only derive a more accurate indicator of human capital
than previous studies but also achieve similar performance to the well-known wealth
prediction using satellite data.

We also add to the literature leveraging social media data for social science research.
Nearly five billion people worldwide used at least one social media platform in 2023, and
another billion are projected to join by 2027, as emerging and developing economies catch
up (Poushter, Bishop, and Chwe, 2018; Statista, 2022). Social media data has been used
to predict or study diverse outcomes such as migration (Huang et al., 2020; Yin, Gao,
and Chi, 2022), social capital (Chetty et al., 2022), censorship (King, Pan, and Roberts,
2013), alcohol consumption (Curtis et al., 2018) or stock market prices (Bollen, Mao, and
Zeng, 2011). Moreover, micro-evidence suggests that social media posts are informative
about educational characteristics of individual users (Smirnov, 2020; Gémez et al., 2021).
This paper goes a step further and shows that despite the high endogenous selection in
social media usage (Mellon and Prosser, 2017), the corresponding data can be used to
derive accurate education estimates at low administrative units within countries. This
underscores the potential of social media data as part of a global tracking system that

provides timely and granular information on educational outcomes.

2 Data and Methods

To develop and validate our approach, we focus on two large countries with high-quality
ground truth data on educational outcomes: the United States and Mexico. This pairing
allows us to test our approach across different languages (English vs. Spanish), develop-
ment contexts (high income vs. middle income), and, most importantly, levels of Twitter
penetration (see Figure 1). While the United States has one of the highest user densities
in the Americas, Mexico ranks in the lower middle overall and has the lowest penetration
among the five most populous countries in the region. By testing our approach in these
diverse and data-rich contexts, we aim to establish a foundation for potential application

in regions where traditional survey data are scarce or outdated.
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Figure 1: Twitter penetration across the Americas

Geolocated Twitter users per 1,000 inhabitants captured through the Twitter Streaming API in July-
August 2021 for countries in North, Central, and South America.

2.1 Collection and Processing of Twitter Data

We used the Twitter Streaming API to compile a large tweet dataset for both countries.
Until early 2023, Twitter provided free access to real-time information on 1% of all tweets
through its Streaming API, including the text of each tweet and a set of tweet and user
characteristics.! Our final dataset consists of 2,686,779 geolocated tweets from 123,309
users for Mexico and 22,610,134 tweets from 943,164 users for the United States, collected
between July and August 2021.

The tweets included in our final dataset were selected based on three criteria:

1. Geographical location: We excluded all tweets that were not posted from within the

geographic territory of the respective country. In the case of the United States, we

'In February 2023, the free Streaming API was replaced with a paid service. Twitter described the
1% sample provided by its free Streaming API as random, though the exact mechanism was proprietary,
not fully transparent, and shown to exhibit systematic biases (Morstatter et al., 2013). Importantly, the
generalizability of our approach does not require the sample to be representative of all Twitter users
but only consistent across countries and time. While Twitter provided a single global API endpoint,
the proprietary nature of the sampling mechanism means that regional differences in coverage cannot be
entirely ruled out. However, Morstatter et al. (2013) found that when using geographic bounding boxes
as collection parameters — as we do — the Streaming API captured approximately 90% of geotagged
tweets rather than the nominal 1% sampling rate, leaving limited room for region-specific variation in
sampling coverage.



use all tweets from the mainland, Alaska and Hawaii, but not from unincorporated
territories such as Puerto Rico or the Virgin Islands. We also exclude tweets without
precise location information (i.e., less precise than municipality /county level). Our
final sample comprises tweets with exact coordinates (MX: 3%, US: 3%), neighbor-
hood or point of interest (poi)-level precision coordinates (MX: 2%, US: 2%), and
city-level precision coordinates (MX: 95%, US: 94%).

2. Language: For each country, only tweets written in the primary native language

(i.e., Spanish for Mexico and English for the United States) are included.

3. Source: A major concern regarding the reliability of Twitter data is that many
tweets are automatically disseminated through APIs rather than individually cre-
ated by a human user. We thus restrict our sample to content that is posted through
the four main channels for human users: iPhone, Android, iPad, and Instagram.?
This excludes tweets generated through third-party APIs from platforms such as
Foresquare or CareerArc (approximately 1 percent of geolocated tweets in Mexico
and 7 percent in the United States).

To compute municipality- or county-level statistics, we follow a three-step procedure.
First, each tweet is assigned to a geographical unit (i.e., municipality or county) based on
its coordinate data. While this is straightforward for exact coordinates, we apply different
types of consistency checks to find the correct unit when coordinate information consists
of a bounding box at the city, poi, or neighborhood level.?

Next, we approximate the home municipality or county for each user. If users tweet
from more than one geographical entity (MX: 33% of users, US: 35% of users), we assign all
their tweets to the entity from which they tweeted the most. For users whose tweet counts
are equally divided among two or more entities (MX: 1%, US: 2%), we use the number of
tweets posted during non-work hours on weekdays as a tiebreaker. This procedure results
in the reassignment of 14 percent of tweets in Mexico and 12 percent of tweets in the
United States. Tweets that cannot be unambiguously assigned to a municipality through
this procedure are dropped (MX: 0.4%, US: 0.2%).

2For tweets posted through Instagram, we exclude all tweets that use the default text (”Just posted
a photo @..."”) rather than a message specified by the user. Tweets posted through the Twitter website
are not included in our sample becuase they do not have any associated coordinates.

3In most cases, assignment to the geographical unit containing the centroid of the tweet’s bounding
box yielded correct results. However, particularly in the Mexican case, where the location precision for
tweets tends to be lower (and city-level precision as defined by Twitter refers to municipalities rather
than places within municipalities), we combine spatial joins with name matching to ensure that all tweets
are assigned to the correct entity.
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Figure 2: Data Extraction and Model Training Pipeline

Finally, data is aggregated at the municipality or county level using the unit-level sum,
mean, or median depending on the distribution of the underlying variables (for details,
see Section 2.3 and Appendix C). To give equal weight to all users irrespective of their

degree of activity, all tweet-level variables are first aggregated at the user level.

2.2  Survey Data

While many countries lack timely and spatially disaggregated information on educational
outcomes, such data are available for both Mexico and the United States, allowing us to
train and test a prediction algorithm in two different settings. Our main outcome variable
is years of schooling for both countries, but we also look at the share of adults holding
different educational degrees to better understand where in the educational distribution
our models work best (see Table D.1). We use data from the 2020 census for Mexico
and from the American Community Survey (2017-2021, 5-year estimates) for the United

States, meaning that outcomes for both countries are temporally closely aligned with



our input features from 2021.* Following Barro and J. W. Lee (2013), we approximate
county-level years of schooling for the US based on the proportion of the population
holding different educational degrees and the average years of schooling associated with
these degrees.’

Section C in the Appendix presents summary statistics on all outcome variables. In
the average Mexican municipality, 28 percent of the population holds a post-basic degree,
54 percent has graduated from secondary school, 76 percent has finished primary school,
and the average person has completed 7.8 years of schooling. The corresponding figures
in US counties are 23 percent with a bachelor degree, 54 percent with some college, 88

percent with a high school degree, and 13.3 years of schooling.’

2.3 Features

Our feature matrix comprises municipality-level information on (i) Twitter penetration,
(i) Twitter usage, (iii) spelling mistakes, (iv) topics, (v) sentiment, and (vi) user net-
works (for a detailed overview, see Section C and D in the Appendix). In addition, we
also include population density estimates.” To advance our understanding of the aspects
of people’s online behavior that are most predictive of human capital, we deliberately
focus on a limited number of interpretable features rather than, for example, using tweet
text embeddings. Importantly, the included features vary in how directly they capture
education. In contrast to previous satellite-based approaches, several of our indicators
are direct expressions of education (e.g., spelling mistakes, grammatical errors) or closely
linked to educational attainment (e.g., different topics) rather than reflecting only the
economic consequences of education. Nevertheless, other features such as Twitter pen-
etration, usage patterns, and network characteristics are related to both education and

broader socioeconomic conditions, meaning that our predictions partly capture regional

4The Mexican census data is publicly available at https://www.inegi.org.mx/datosabiertos/,
while data from the American Community Survey can be accessed at https://www.ers.usda.gov/
data-products/county-level-data-sets/county-level-data-sets-download-data/.

® Average years of schooling for a given county are computed using > j h; Dur;, where h; indicates the
the proportion of the population that has attained education level j and Dur; indicates the corresponding
duration to attain level j. We use data from the Current Population Survey, specifically the 2021 Annual
Social and Economic (ASEC) Supplement, to compute estimates for Dur;. In Mexico, this approximation
is not necessary because average years of schooling are included in the census data.

SMX: Estimates for years of schooling, primary and secondary completion are provided for the pop-
ulation aged 16 or more, while the share with post-basic education is defined for adults (i.e., over 18).
US: All education statistics refer to the population aged 25 or older.

"Population data is globally available; thus, its inclusion does not limit the external validity of
our approach. Population data is also necessary for the computation of tweet and user densities. A
model using only population estimates will serve as our benchmark against which the performance of our
approach is compared.
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Table 1: Summary statistics by education level for selected features

Mexico United States
Bottom 25%  Top 25% All Bottom 25% Top 25% All
User density 0.23 0.86 0.47 0.79 2.49 1.45
Tweet density 1.94 16.70 7.00 12.03 45.14  24.40
Tweet length 68.75 72.88  69.94 77.09 82.05  80.86
Account age 5.03 6.34 5.67 6.67 7.51 7.06
Tweets per year 1,306.55 362.71 841.93 648.93 351.58 495.19
Favorites per tweet 5.02 1.34 3.76 1.52 2.14 1.73
Error total 24.60 23.54  25.28 15.23 13.14  13.87
Error grammar 0.17 0.15 0.17 0.65 0.47 0.55
Error typos 12.18 10.66 12.47 7.48 6.92 7.19
Topic science 1.84 1.92 1.87 1.58 1.82 1.69
Topic relationships 6.66 5.72 6.27 5.31 4.42 4.76
Sentiment positive 0.39 0.37 0.38 0.50 0.50 0.50
Offensive language 0.15 0.16 0.15 0.17 0.16 0.16
Network clos. centr. 0.06 0.31 0.16 0.28 0.42 0.34
Number of Areas 430 429 1,714 723 723 2,889

Municipality (MX) or county (US) averages for selected features by educational outcome. The bottom
25% and top 25% refer to the municipalities/counties in the lowest or highest quartile of years of schooling,.
Only areas with at least one tweet are included. Features are not log transformed.

socioeconomic outcomes correlated with education. The implications of this are discussed
in detail in Section 3.5.

Twitter penetration data (4 features) consists of the total number of tweets and users
as well as the number of users and tweets relative to the population (referred to as user and
tweet densities). We further include general information on Twitter usage (11 features),
such as the average tweet length, the number of followers, the user mobility, the account
age, the number of emojis per tweet, or the share of tweets posted during work hours
or from an iPhone. To obtain estimates for the frequencies of different spelling mistakes
(MX: 23 features, US: 16 features), we use a Python wrapper for “LanguageTool”, an
open source grammar, style, and spell checker. LanguageTool is available in over 25
languages, including English and Spanish, and classifies the detected errors into different
categories such as grammar, typos, casing, punctuation, or style.® We include the total
number of errors per 1,000 characters and the corresponding numbers for each category.
To determine the topics of each tweet (19 features), we use a pre-trained multi-label tweet
classification model (Ushio and Camacho-Collados, 2022). This allows us to estimate the
probability a given tweet is about a particular topic, such as news, celebrity, sports, or

science. Since no pre-trained tweet classification models are available in Spanish, we

8See https://dev.languagetool.org/languages for information on language availability.
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translate all Spanish tweets into English using a pre-trained model based on the Marian
NMT framework (Junczys-Dowmunt et al., 2018) to determine the topic distributions of
our Mexican tweets.? A further group of inputs comprises features related to sentiments
(4 features), such as the share of tweets with negative or positive sentiments, offensive
language, or hate speech. They are generated using pre-trained classification models for
Spanish and English tweets.!? Finally, we also add network indicators (4 features), such as
degree and closeness centrality. For this purpose, we use quotes and mentions to construct
a user-to-user network and subsequently aggregate this network to the municipality or
county level. We take the log of right-skewed features and standardize all features before
training.!

To address potential problems related to sparse or noisy data in areas of low population
density, we develop a procedure that allows our model to learn from spatial neighbors.
For each unit (i.e., municipality or county), we create a cluster consisting of the focal
unit and all its spatial neighbors, and compute cluster-level estimates for each of our
features. We use this information about Twitter usage in the broader area around each
unit in three ways: First, we add the cluster-level estimates as additional inputs to our
feature matrix (i.e., for each unit and measure, we include both unit- and cluster-level
values). Second, we use cluster-level features to impute missing values in units without
tweets using an elastic net regression model. This provides estimates for features that
cannot be observed in the absence of tweets, and is necessary as most machine learning
algorithms cannot handle missing values. Third, in units with fewer than 5 tweets, we
replace extreme outliers with imputed values using the same imputation procedure.!?

Table 1 shows the mean of selected features by educational level for both countries
(see Section C in the Appendix for complete summary statistics). This simple inspection
already reveals a strong correlation between Twitter features and educational outcomes.
In both countries, user and tweet density is markedly higher in places with more educated
populations. Similarly, users in more educated areas tend to write longer tweets, make
fewer errors, and talk about different topics (e.g., science rather than relationships). On

the other hand, users in less educated areas tweet more actively.

9The model is provided via the HuggingFace library: https://huggingface.co/docs/
transformers/model_doc/marian.

10The classification models are provided by the same library used for the topic classification above.

1 Appendix D documents which variables are log-scaled. Following Stahel (2000), we use log(z + ¢) to
deal with zeros, with z as the values of a particular feature and ¢ = Q3 55 / Qo.75, where Q.25 and Qo 75
are the first and third quartiles based on feature values = > 0.

12Extreme outliers are defined as values that are lower than Q.25 —3 IQR or higher than Qg 75+3 IQR,
with Qo.25 and Qq.75 as the first and third quartiles and IQR as the interquartile range.
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2.4 Training and Evaluation

To train our models, we use a stacking regressor combining five machine learning algo-
rithms: (i) elastic net regression, (ii) gradient boosting, (i7i) support vector regression,
(iv) nearest neighbor regression, and (v) a feed-forward neural network (i.e., a multi-
layer perceptron). We use cross-validated grid search to tune the hyperparameters of
each model. The performance of the final stacking regressor is evaluated using five-fold
cross-validation. This procedure is known as nested cross-validation. We report the cross-
validated R? for each fold as well as an overall R? obtained by combining all cross-validated

predictions, where R? represents the coefficient of determination.'?

3 Results

3.1 Main Results

Our final model is able to account for 70 percent of the variation in years of schooling in
Mexican municipalities and 65 percent in US counties (see Figure 3). Population-weighted
performance estimates are even higher, reaching an R? of 0.85 in Mexico and of 0.70 in the
United States.!* A closer look at the predictive power for different educational degrees
reveals substantial variation in model performance in both countries.

In Mexico, we report an R? of 0.69 for the share of the population holding a post-basic
degree (i.e., high school or more), an R? of 0.64 for the corresponding share with a sec-
ondary degree, and an R? of 0.61 when aiming to predict the prevalence of primary school
completion. Differences are even more pronounced in the United States, where our model
captures 70 percent of the variation in the percentage of adults that hold a bachelor’s
degree, 62 percent for the share that went to college, and 50 percent when focusing on
high school completion. This suggests that Twitter data is particularly informative about
higher education levels and less sensitive to differences at the lower end of the education
distribution. This pattern is likely driven by selection into platform usage, as more edu-
cated populations are more likely to use Twitter and generate sufficient data for reliable
predictions.

Among the five included models, gradient boosting and support vector regression
perform best and, accordingly, receive the highest weights in the final stacking regressor
(see Figure A.1 and Table A.1 in the Appendix). The neural network and the nearest

neighbor regressor, on the other hand, perform rather poorly, achieving a lower predictive

~ N2
BR2=1- %, where y; are observed values, ¢; are predictions, and ¥ is the observed mean.

1Population weights are not taken into account during training.

10
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Figure 3: Performance for different educational outcomes

Model performance results for different educational outcomes in Mexican municipalities (blue) and US
counties (red). All models are evaluated through five-fold cross-validation. Boxplots show the median
(solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as the minimum &
maximum (whiskers) for the R? across validation folds for each outcome and country. The table on the
right presents the R? based on out-of-sample predictions for the full data sets (stacked across folds).
Population-weighted R? are presented in parentheses.

power than the simple elastic net model (i.e., a regularized linear model). For all outcomes,
the ensemble of all models outperforms the best-performing individual model, highlighting
the benefits of stacking.

As Figures 5a and 5b show, our model produces the attenuated predictions that are
typical for continuous outcomes (Ratledge et al., 2022), meaning that, on average, esti-
mates are too high in low-education and too low in high-education areas.'® This pattern
also becomes apparent when comparing maps of true and predicted years of schooling (see
Figures 4a and 4b). While spatial patterns look very similar for the two measures, they

are slightly less fine-grained in the prediction maps.

15The regression line in Figure 5 and Appendix Figure A.2 does not take population weights into
account. The fact that there are many sparsely populated areas at the lower, and few, but very populous
areas at the higher end of the education distribution, creates the illusion that the line does not fit the
data.

11



(a) Predictions for Mexico

Years of schooling Predicted years of schooling

(b) Predictions for the United States

11
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(c) Prediction Error

Figure 4: Maps of true vs. predicted years of schooling

Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions
from all folds. In Figure 4c, red indicates overprediction and blue underprediction of true values.
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Predicted values for all municipalities and counties are obtained by combining out-of-sample predictions
from all folds. Bubble size is proportional to the population in each unit. R? and population weighted
R? shown. The line indicating the best linear fit is not population-weighted.

3.2 Robustness and Generalizability

To assess the reliability of our predictions, we quantify uncertainty at two levels. First, the
boxplots in Figure 3 show variation in model performance across different cross-validation
folds, indicating relatively stable performance with modest variation for most outcomes.
Second, we assess prediction uncertainty at the unit level by re-running the full cross-
validation procedure with different random fold assignments (see Appendix Section A.5 for
details). We find that prediction uncertainty is generally higher in Mexican municipalities
than in US counties, likely reflecting the larger underlying variance in years of schooling
in Mexico. Within both countries, uncertainty is substantially higher in municipalities
or counties with smaller populations, fewer Twitter users, and greater reliance on spatial
imputation (Figures A.8 and A.9). These patterns closely mirror those of prediction
errors (Figure A.10), and both uncertainty and errors exhibit spatial clustering (Figures 4c
and A.8).

We also assess the spatial generalizability of our approach. To this end, we conduct
leave-one-state-out cross-validation (e.g., Breen et al., 2025; Chi et al., 2022), where mod-
els are trained excluding all municipalities or counties from one state at a time and then
used to predict outcomes in the held-out state. This tests whether the model can gener-

alize not only to unseen municipalities or counties, but to entirely new geographic areas
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with potentially different socioeconomic contexts. In line with expectations and previous
research, this more stringent test of spatial transferability yields lower performance esti-
mates than our main five-fold cross-validation (Figures A.5 and A.6). Yet, performance
remains strong, with unweighted R? for years of schooling of 0.57 in Mexico and 0.59 in
the United States, and population-weighted R? of 0.79 and 0.69, respectively.

Finally, we assess temporal generalizability. Given the substantial changes in Twitter’s
data accessibility and user composition since our data collection period (Ozturan et al.,
2025; Nutakki et al., 2025; Robertson, 2023), we examine whether our 2021 Twitter
data remain predictive of more recent educational outcomes. For the United States,
we use updated data from the most recent American Community Survey (2019-2023
compared to 2017-2021) to re-evaluate our models. Comparable updated data are not
yet available for Mexico (most recent census: 2020, which we already use in our main
analysis). Performance is very similar across all outcomes with declines of 0-2 percentage
points compared to our main estimates (Figure A.7). For years of schooling, we report
an R? of 0.64 and a population-weighted R? of 0.69. This stability suggests that social
media data can provide reliable predictions even when outcome data extend beyond the

data collection period, likely reflecting the slow-moving nature of educational attainment.

3.3 Feature Importance

As our model is based on a limited number of interpretable inputs (see Sections C and
D in the Appendix), we can explore how important various types of features are to the
success of our approach. Figure 6 shows how different groups of features perform on their
own. A model using only population data serves as a benchmark and achieves an R? of
0.48 for Mexico and 0.34 for the United States. Simple Twitter penetration data, that is,
user and tweet densities or counts, already outperforms the population model, with R?
values of 0.57 for Mexico and 0.36 for the United States. Particularly in Mexico, knowing
where people tweet is thus more informative about human capital concentration than
knowing where people live.

The performance of usage statistics, i.e., features such as the average tweet length or
the number of followers, is high in both countries, accounting for 55 to 58 percent of the
variance in educational outcomes. The same is true for topic variables, which reach an R?
around 0.5 in both countries. Error and network statistics, on the other hand, seem to
be much more strongly related to education in Mexico (R? of 0.55 for errors and 0.51 for
networks) than in the United States (R? of 0.42 for errors and 0.34 for networks). Finally,

sentiment features are the only group of variables that fails to surpass the benchmark
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Figure 6: Performance of feature subgroups

Performance of feature subgroups for Mexico (blue) and the United States (red): Population (2x4 features,
i.e., 4 at the unit level and 4 at the cluster level), Twitter penetration (2x4 features), usage statistics (2x11
features), spelling mistakes (MX: 2x23 features, US: 2x16 features), topics (2x19 features), sentiment (2x4
features), and networks (2x4 features), as well as all features at the unit level (i.e., municipality or county)
and all features at the cluster level (i.e., including spatial neighbors). All models are evaluated through
five-fold cross-validation. Boxplots show the median (solid line), mean (dotted line), the 20th & 80th
percentile (box limits), as well as the minimum & maximum (whiskers) for the R? across validation folds
for each outcome and country. The outcome is years of schooling in all models.

model. We can also evaluate how our model benefited from including cluster-level features
(see Figure 6). When limiting ourselves to unit-level features, we report R? values of 0.63
(MX) and 0.56 (US), as opposed to 0.70 (MX) and 0.65 (US) for the full model.'® Thus,
exploiting information from spatial neighbors is critical to the predictive power of our
models. Overall, the performance of no single group of features comes close to that of the
overall model, suggesting that the different inputs are complementary.

To better understand these complementarities, we use SHAP (SHapley Additive ex-
Planations) to estimate marginal contributions (Lundberg and S.-I. Lee, 2017). This
approach is based on cooperative game theory (Shapley, 1953) and allows to compute
importance scores for different features and feature groups (see Appendix A.2). When
looking at the contributions of individual Twitter features, the user density emerges as
the single important predictor in the majority of models (i.e., models for different coun-
tries and educational outcomes). It is the most important feature in five models (US:

4, MX: 1) and the second most important in the remaining (MX: 3). The importance

16This provides a lower bound for the true benefit of exploiting spatial information as cluster-level
features are also used to impute missing values and extreme outliers.
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of other features varies more strongly between countries, but topics such as sports, sim-
ple usage statistics including the tweet length or the account age, as well as network
closeness centrality (only US), tend to be highly predictive too. When the SHAP values
are aggregated into feature groups similar to Figure 6, we observe that the SHAP-based
feature importance ranking closely resembles the ranking based on group-specific model

performance.!”

3.4 Performance Heterogeneity

We now explore how our model is affected by the limited number of tweets in sparsely
populated areas (Figure 7). In line with expectations, performance is substantially higher
when limiting the evaluation to municipalities or counties with more tweets or users. This
relationship is even more pronounced when looking at different population thresholds.
Particularly in Mexico, model performance increases drastically if we exclude smaller
municipalities, where both input and output data is likely to be more noisy. This is
consistent with finding that, in both countries, the population-weighted R? is substantially
higher than the unweighted R? for all outcomes.

It is also informative to look at performance by the amount of data we use to make
the predictions. For our main analyses, we streamed Twitter data for two months, and
used millions of tweets to construct municipality or county-level indicators. To see if
similar results can be achieved with a shorter data collection period, we re-run the entire
feature engineering and model training procedure on different subsets of our data. As
Figure 8 shows, drastically shortening the data collection period only marginally reduces
performance. This is especially true for Mexico, where one day of tweets already yields
an R? of more than 0.65. In the US, on the other hand, it takes about week of Twitter
data to account for 60 percent of the variation in county-level education outcomes. As
the curves for both countries flatten out almost completely after a few weeks, extending
the data collection period beyond two months is likely to yield only negligible additional

performance gains.

17 Aggregations are the sum of absolute SHAP values (see Figure A.3). Feature importance rankings
show high stability across cross-validation folds. Spearman rank correlations are p = 0.69 for Mexico
and p = 0.81 for United States, and the most important feature overall ranks first in all folds for both
countries (see Appendix Section A.2 for details).

4r2(1-r2)2(n—k—1)2
WZ=1)(nF3)

18Standard errors (shaded area) are computed using \/ , where n is the sample size

and k is the number of features (Cohen et al., 2013).
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Figure 7: Performance heterogeneity

Performance heterogeneity by user, tweet, and population count for Mexican municipalities (blue) and
US counties (red). The solid line shows the R? (including standard errors) for units (municipalities or
counties) above different tweet, user, or population count cutoffs.'® The dashed line shows the proportion
of units included at each cutoff.
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Figure 8: Performance by data collection period

Model performance for shorter data collection periods for Mexican municipalities (blue) and US counties
(red). The value for 0 weeks/days corresponds to an R? of our baseline model using population data
only. Standard errors are computed using the same formula as reported in Figure 7.
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3.5 Downstream Performance

In addition to being directly useful to better understand local patterns in development
outcomes and target interventions accordingly, predicted measures may also serve to study
relationships with other variables. Using wealth data for Mexico and income data for the
United States (see Appendix Table D.1), we thus explore how our Twitter-based indi-
cator performs in downstream regression tasks. The fact that machine-learning-derived
indicators are noisy measures gives rise to several potential biases that can compromise
such applications. If edu is the true distribution of the indicator we predicted as edu
(e.g., years of schooling), and econ is another variable whose relationship to edu we wish
to study (e.g., wealth), three types of measurement error may occur (see simulations in

Appendix Figure B.1):

1. Attenuation bias: A random measurement error in edu will dilute the correlation
between edu and econ. This results in an attenuation bias when regressing econ
on e/d\u, but not in the opposite specification, and decreases precision in both cases
(see, e.g., Fuller, 1987).

2. Berkson-type error: A bias that has only recently gained attention (see Ratledge
et al., 2022) arises when measurement errors are correlated with edu. The typical
behavior of machine learning models is to overpredict for low values and underpre-
dict for high values, a pattern that is very apparent in our application, where the
correlation between the prediction error (i.e., edu - edu) and edu amounts to about
-0.6. This does not affect the correlation between edu and econ, but it distorts co-
efficients in downstream regressions. Specifically, it leads to a downward bias when
edu is used as the outcome variable, and to an upward bias when it acts as the

explanatory variable.

3. Correlated learning: If the features used to predict edu contain wealth or income-
related information, our model might exploit the correlation between econ and edu
to make better predictions. Given that some of our features, such as Twitter pene-
tration, usage and network features, are likely related to both education and broader
socioeconomic conditions, this is to be expected in our setting. Indeed, our feature
matrix is almost as predictive of economic outcomes (R? = 0.64 for wealth in Mexico

and R? = 0.62 for income in the US) as of education.!® This creates an artificially

19This is substantially higher than a model using education only (years of schooling) for the prediction
(MX: 0.57, US: 0.50), suggesting that our feature matrix indeed contains wealth and income-related
information that is independent of education levels. Estimates are based on re-running the same machine
learning procedure we use to predict education for wealth and income.
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strong correlation between edu and econ. When using edu as the dependent vari-
able, this only leads to overoptimistic standard errors. If edu is the independent
variable (and edu and econ are positively correlated), it additionally induces an

upward bias for the point estimate.
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Figure 9: Effects of Berkson-type error correction

True vs. predicted values with correction of the Berkson-type error for Mexican municipalities (blue) and
US counties (red). For the correction, we apply an adjusted loss function in the final ridge regression
model that performs the stacking. Following Ratledge et al. (2022), we add an additional penalty term
to the standard loss function of the ridge regression, which consists of the mean squared error (M SE)
plus an Ly penalty. The adjusted loss function is thus MSE + A\jLa + A\;Qpias, Where ), is the strength
of the additional penalty and a hyperparameter that can be tuned. Qp;qs is the maximum of the squared
quintile-specific biases, equal to max;(E[y; — yily; € Q,]?), where Q; € {Q1,...,Q5}, and g; is the
predicted y for observation i. The figure shows the effect of three A\, parameters on the prediction bias.
Solid lines indicate the best linear fit of each model, while dashed black lines represent the expected fit
without bias (8, = 1).

With these considerations in mind, we now compare the downstream correlations
(Appendix Figure B.2) and regression results (Table 2) of edu and econ with the true cor-
relations captured by edu. As Figure B.2 in the Appendix shows, the predicted education

indicator consistently understates true correlations, suggesting that the attenuation bias
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dominates over a potential bias due to correlated learning. Table 2 further shows that the
slope of the regression coefficients is considerably underestimated for all outcomes when
using edu as the dependent variable of the regression and slightly overestimated in the
reverse specification, a pattern that is consistent with a Berkson-type error. Hence, it
appears that the correlation estimates are mainly affected by attenuation, while biases in

regression coefficients are largely driven by a Berkson-type error.

Table 2: Downstream regression results

Mexico United States
SZEifhifg EZ:C Secondary  Primary SZE?)I;)SI;Z Bachelor  College SI::I}llgé)lll
o 0.740  0.661 0.703 0.728 0.692 0.707  0.655  0.487
B edurvecon 014y (0.015)  (0.014)  (0.014)  (0.013)  (0.013) (0.013) (0.016)
ey 0549  0.499 0.526 0.516 0.496 0526 0470  0.320
fpiedurcecon 013y (0.014)  (0.012)  (0.012)  (0.011)  (0.012) (0.011) (0.011)
B i ccon 0TAS 0651 0.744 0.687 0.699 0.727  0.661  0.362
oi Cdlle (0.017)  (0.018)  (0.018)  (0.016)  (0.016)  (0.017)  (0.018) (0.013)
0.191  -0.161 0177 -0212  -0.196  -0.181  -0.185  -0.167
Be =By (0.012)  (0.011)  (0.012)  (0.014)  (0.011)  (0.012) (0.011) (0.012)
0.008  -0.010 0.041 -0.042 0.007 0021  0.005 -0.125
B = Be (0.014)  (0.013)  (0.015)  (0.016)  (0.014)  (0.016) (0.017) (0.014)
_ 0.740  0.661 0.703 0.728 0.692 0.707  0.656  0.488
Bu: econ ~ edu (0.014)  (0.015)  (0.014)  (0.014)  (0.013)  (0.013) (0.013) (0.016)
‘ — 0794  0.717 0.826 0.863 0.765 0738  0.767  0.640
Ppiecon~edu 019y (0.019)  (0.019)  (0.019)  (0.017)  (0.017) (0.018) (0.023)
. — 0577 0.539 0.564 0.646 0.535 0.520  0.443  0.515
Peiecon~educ 013y (0015)  (0.013)  (0.015)  (0.012)  (0.012) (0.012) (0.019)
0.054  0.056 0.123 0.135 0.072 0031  0.111  0.152
B =Py (0.012)  (0.012)  (0.013)  (0.014)  (0.015)  (0.014) (0.014) (0.025)
0162 -0.122 0139  -0.083  -0.157  -0.187  -0.212  0.028
B = Be (0.010)  (0.011)  (0.011)  (0.012)  (0.013)  (0.012) (0.012) (0.024)
N 2457 2457 2,457 2,457 3,140 3,40 3,140 3,140

The predictions for different educational outcomes, referred to as edu, are denoted as e/cm, and

econ is wealth for Mexico and income for the United States. For &zﬂc, we apply a Berkson
error correction with A, = 3 for years of schooling and A\, = 15 for all other outcomes (i.e.,

all percentages). Results are reported in standard deviations (212 and (;ﬁc are standardized
using the distribution of edu). B, — B, is the original bias and §; — (. is the bias using the
predictions based on the adapted loss function. Education is the dependent variable in the
top panel and the independent variable in the bottom panel. Standard errors in parentheses.

While the attenuation bias and correlated learning cannot be avoided in most appli-
cations, it is possible to refine our model in a way that minimizes the Berkson error.
Following Ratledge et al. (2022), we add a further penalty term for a quintile-specific bias

to the loss function of our final stacking model. If the weight given to this penalty is
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sufficiently high, the tendency to understate high values and overstate low values effec-
tively disappears (see Figure 9), albeit at the cost of reduced overall performance, with a
decrease in the R? by about 10 percentage points. Using this new set of predictions (see
Table 2), the bias in the top panel (@ ~ econ) becomes negligible for most outcomes.?
In the bottom panel (econ ~ @) the direction of the bias is reversed as the attenuation
bias begins to dominate. This suggests that when appropriately modeled, predicted indi-
cators can yield accurate estimates in downstream regression tasks, provided they serve
as the outcome rather than the treatment variable. Fortunately, the former scenario is

more common, as it enables the evaluation of interventions or policy changes.

4 Conclusion

Our results show that human capital can be accurately inferred from Twitter data using
machine learning. We are able to account for 70 percent of the variation in years of school-
ing in Mexico and 65 percent in the United States. This is substantially higher than the
performance reported in previous attempts to predict human capital, and comparable to
the effectiveness of satellite data in predicting wealth. As only a few days of Twitter data
are needed to achieve a good performance and the natural language processing tools we
use for feature preparation support many different languages, our approach has substan-
tial potential for broader application. In addition, despite the lower Twitter penetration,
our model tends to perform better for Mexico than for the United States, suggesting that
the method is also relevant to less affluent regions with lower levels of social media usage.

In addition to being directly useful for understanding spatial patterns and targeting
interventions, predicted indicators also have the potential to advance scientific research
by providing inputs for downstream inference tasks. This paper highlights that such
applications are not without caveats. Our data and simulations show that estimates in
downstream regression tasks tend to be subject to several biases. We further demonstrate
that these biases can be corrected using an adapted loss function (see Ratledge et al., 2022)
if the predicted indicator serves as the dependent variable. If carefully tuned, machine-
learning-derived indicators can thus become a valuable data source to study effects on
outcomes for which ground truth data are unavailable. However, more research is needed
to better understand the empirical relevance of each of the biases, and experiment with

the most effective ways to address them.

29The bias becomes insignificant for 5 out of 8 outcomes. The correction appears to be particularly
effective for outcomes that have a higher initial R?. In the last model (high school), which is also the
one with the lowest initial R?, the penalized loss function achieves only a limited slope correction with
Aq = 15 (not shown) and the regression is thus unable to recover the true effect.
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These contributions notwithstanding, three important limitations should be acknowl-
edged. First, we report performance of our approach for a specific platform at a specific
point in time, namely Twitter in 2021. Twitter (now X) data has since changed substan-
tially, with tighter restrictions and higher costs for large-scale data collection. In parallel,
the platform has undergone shifts in governance, user composition, and posting behavior
(Ozturan et al., 2025; Nutakki et al., 2025; Robertson, 2023). While the data we use re-
main highly predictive of today’s education levels, real-time prediction or tracking changes
over time would require recalibrating the model to the current Twitter environment or
to a different platform. Second, our evaluation is limited to two countries. Although
the United States and Mexico differ substantially in economic development, language,
and Twitter penetration, we cannot make precise predictions regarding transferability to
other countries, especially those with very low platform adoption. The strong performance
in Mexico, which has relatively low Twitter penetration compared to other countries in
the Americas, suggests our approach may be applicable beyond high-penetration contexts,
but further research is needed to confirm this. Third, within countries, Twitter data is
less informative at the lower end of the education distribution and in less populated ar-
eas with lower Twitter penetration. This likely reflects that Twitter use is concentrated
among the highly educated, making the platform less suited for distinguishing between
low and medium education levels. Including data from other platforms with less selective
usage patterns may be a promising avenue for future research.

Looking forward, recent advances in large language models present both interesting
possibilities and challenges for our approach. On the one hand, LLMs could enable more
sophisticated evaluation of tweet content, including advanced error detection, zero-shot
topic classification, and text embeddings as features, potentially increasing predictive
performance and facilitating multi-language integration.?! On the other hand, as social
media users increasingly adopt Al writing assistants, education signals from indicators
such as spelling errors may become diluted. Nevertheless, most feature groups, such as
penetration, usage statistics, network structures, and topics, should remain informative,
and differential Al adoption across demographic groups (Alikhani, Harris, and Patnaik,
2025; OECD, 2024) may create new predictive signals.

Overall, our results demonstrate that social media data can provide accurate spatially
granular estimates of educational attainment. As social media use continues to expand
globally, this approach offers an increasingly promising complement to traditional survey

methods for measuring human capital development.

2INote, however, that costs under current commercial API pricing remain prohibitively high for pro-
cessing millions of tweets.
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Supplementary Information

A Model Performance

A.1 Main Results
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Figure A.1: Performance of individual models

Performance of individual models considered in the final stacking model for years of schooling in Mexico
(blue) and the United States (red). All models are evaluated through five-fold cross-validation. Boxplots
show the median (solid line), mean (dotted line), the 20th & 80th percentile (box limits), as well as the
minimum & maximum (whiskers) for the R? across validation folds for each outcome and country.
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(a) MX: Post-basic degree (b) MX: Secondary degree (c) MX: Primary degree
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Figure A.2: True vs. predicted values for secondary outcomes

Predicted values for all Mexican municipalities (blue) and US counties (red) are obtained by combining
out-of-sample predictions from all folds. Bubble size is proportional to the population in each unit. R?
and population weighted R? shown. Line indicating best linear fit is not population weighted.
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A.2 Feature Importance

We compute SHAP values from the final stacking regressor, which combines predictions
from five base models (elastic net, gradient boosting, support vector regression, near-
est neighbor regression, and neural network) and is thus representative of our overall
approach. SHAP values are calculated for each municipality or county based on out-
of-sample predictions from cross-validation. We present results for the most important
individual features (Figure A.3a) as well as per group aggregations (Figure A.3b) based
on sums of absolute SHAP contributions. Note that while for signed SHAP values, the
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Figure A.3: SHAP value feature importance for stacking regressor

Most important features and feature subgroups in the stacking regressor for Mexico (blue) and the United
States (red). The displayed feature importance is based on SHAP (SHapley Additive exPlanations) values,
an approach based on cooperative game theory (Lundberg and S.-I. Lee, 2017). In Figure A.3a, the 20
most important features are shown for each country, ranked according to the absolute SHAP value. Figure
A.3b presents the sum of absolute SHAP values for 7 different feature groups. Note that due to the high
correlation between some features, estimates should be interpreted with caution.
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sum of feature contributions equals the difference between the individual prediction and
the average prediction across all observations, this “additivity property” does not hold for
absolute values (Figure A.3a) or sums of absolute values (Figure A.3b). Our presented
measures should thus be interpreted as heuristic summaries of predictive contribution
rather than formal decompositions.

While SHAP is specifically designed to assess contributions of correlated individual
features, results could still be unstable under very high multicollinearity. We assess ro-
bustness in two steps. First, we examine pairwise feature correlations in our feature

matrices, finding that only a very limited number of feature pairs are highly correlated
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Figure A.4: Feature correlation analysis

Pairwise correlations between features for Mexico (blue) and the United States (red). Figure A.4a shows
the distribution of absolute correlation coefficients across all feature pairs. Vertical dashed lines indicate
thresholds at |r| = 0.7, 0.8, and 0.9. Figure A.4b displays the number of highly correlated feature pairs
(Ir] > 0.8) within each feature group, shown as fractions of total possible pairs. High correlations occur

predominantly within network groups, while all other groups show few or no high-correlation pairs in
both countries.
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(see Figure A.4), with mean absolute correlations of || = 0.16 for Mexico and |r| = 0.15
for the United States. Second, to directly assess whether feature importance rankings are
stable across different model specifications and data samples, we examine the consistency
of SHAP values across cross-validation folds. Each fold represents a different subsample
of municipalities/counties and a distinct model configuration with fold-specific hyperpa-
rameters and weights. Feature importance rankings prove remarkably stable, with mean
Spearman rank correlations of p = 0.69 for Mexico and p = 0.81 for the United States. In
both countries, the most important feature overall also consistently ranks first across all
five folds. Among the top five features, 92% rank within the top five in each individual
fold for Mexico and 68% for the United States, while all of them rank within the top ten

in both countries.
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A.3 Leave-One-State-Out Cross-Validation
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Figure A.5: Leave-one-state-out cross-validation results for Mexico

Predicted values from leave-one-state-out cross-validation where models are trained excluding all munic-
ipalities from one state at a time and evaluated on the municipalities of the held-out state. Bubble size
is proportional to population. R? and population weighted R? shown. Line indicating best linear fit is
not population weighted.
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(a) Years of schooling (b) Bachelor degree
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Figure A.6: Leave-one-state-out cross-validation results for the United States

Predicted values from leave-one-state-out cross-validation where models are trained excluding all counties
from one state at a time and evaluated on the counties of the held-out state. Bubble size is proportional
to population. R? and population weighted R? shown. Line indicating best linear fit is not population
weighted.
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A.4 Model Predictions for Future Outcomes
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Figure A.7: Future education outcome results for the United States

Predictions vs. true values based on a model retrained and evaluated using more recent American Com-
munity Survey data (2019-2023) compared to the main analysis (2017-2021). Bubble size is proportional
to population. R? and population weighted R? shown. Line indicating best linear fit is not population
weighted.
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A.5 Prediction Uncertainty

To assess the reliability of our predictions, we quantify prediction variability by repeatedly
re-running the full cross-validation procedure with different random fold assignments.
Specifically, we re-estimate the model 20 times using different random seeds for fold
construction and compute, for each municipality or county, the standard deviation of the
resulting out-of-sample predictions. This allows us to characterize prediction uncertainty
at the unit level and examine how it correlates with observable characteristics.??
Uncertainty is generally higher in Mexican municipalities than in US counties (Fig-
ure A.8). This likely reflects the higher variance in years of schooling in Mexico (SD =
1.49 for Mexico vs. SD = 0.66 in the US). Within both countries, variability is substan-
tially higher in less populous municipalities or counties, in areas with fewer Twitter users
and tweets, and where the model relies more heavily on spatial imputation (Figure A.9).
In Mexico, prediction variability additionally increases at lower levels of educational at-

tainment, a pattern that is much less pronounced in the United States.

Figure A.8: Prediction uncertainty for Mexican municipalities and US counties

Prediction uncertainty for years of schooling, measured as the standard deviation of predicted values
across repeated cross-validation re-runs, for each municipality in Mexico (left) and county in the United
States (right).

22This simple approach is consistent with our overall training setup and provides an easy-to-interpret
measure of prediction stability, but is computationally intensive due to repeated model re-estimation.
More recent approaches to predictive uncertainty estimation include Bayesian machine learning meth-
ods, quantile-based models, and conformal prediction (e.g., Maddox et al., 2019; Akrami et al., 2022;
Angelopoulos and Bates, 2021).
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Figure A.9: Correlates of prediction variability

Unconditional correlation between prediction uncertainty for years of schooling, measured as the standard
deviation of predicted values across repeated cross-validation re-runs, and selected characteristics of
Mexican municipalities and US counties.
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Figure A.10: Correlates of prediction error

Unconditional correlation between absolute prediction errors for years of schooling and selected charac-

teristics of Mexican municipalities and US counties.
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Relatedly, we examine correlates of absolute prediction errors. Unsurprisingly, results
are similar to uncertainty, suggesting that areas with higher prediction variability also
tend to have larger prediction errors (see Figure A.10). Given that spatial clustering is
a key component of our data preparation pipeline, we also disaggregate performance by
imputation status. As expected, we find larger mean average prediction errors (MAE)
for areas that rely more heavily on imputed features. However, increases in MAE com-
pared to non-imputed areas are only 10 percent for the US and 20 percent for Mexico,
suggesting that predictions remain reasonably accurate even in these sparse-data contexts
(Figure A.11).

(a) Mexico (b) United States
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MAE MAE

Figure A.11: Model performance by imputation level

Mean Absolute Error (MAE) for predictions of years of schooling in Mexican municipalities (blue) and
US counties (red) grouped by imputation level. “No Imputation”: units with at least 5 tweets (complete
observed data); “Minor Imputation”: units with 1-4 tweets (outlier imputation based on spatial neigh-
bors); “Major Imputation”: units with 0 tweets (full imputation of all tweet content features based on
spatial neighbors). Lower MAE indicates better predictive performance.
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B Bias Correction

(a) Attenuation bias (b) Berkson-type error (c) Correlated learning

<'S <S )
o o o
V) U] [J]
s s s
=) =) =)
o o °
) U] (U]

econ econ econ
5 5 5 o
e e E o—-d-j”w

—>pe
edu (or edu) edu (or edu) edu (or edu)

Figure B.1: Simulation of different types of biases in downstream regression tasks

Scatter plots and best linear fit for edu (blue) and edu (red) with different types of measurement errors.
Arrows indicate the movement of typical points as a result of each measurement error. In the upper row,

edu (or B/CEL) is the outcome of the regression, while it features as the explanatory variable in the lower
row.
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Figure B.2: Correlation of observed and predicted education with wealth or income

Correlations between true and predicted educational outcomes and wealth in Mexico (blue) as well as
income in the United States (red). 95% confidence intervals shown.
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C Feature Statistics

Table C.1: Survey statistics by country

Variable Country Mean SD Min Median Max
Years of Schooling MX 7.83 1.49 3.40 7.72 14.55

US 13.30 0.66 9.37 13.28 16.13
Post Basic Education MX 0.28 0.13 0.03 0.26 0.89
Bachelor Degree UsSs 22.61 9.71 0.00 20.22 79.14
Secondary Education MX 0.54 0.14 0.12 0.54 0.95
Some College UsS 53.67 10.72 7.41 53.61 90.31
Primary Education MX 0.76 0.11 0.36 0.76 0.98
High School UsS 87.60 6.04 21.85 88.83 98.61
Population MX 51,173.11  147,322.51 81.00 13,552.00 1,922,523.00

US 105,661.95 333,146.18 57.00 25,790.00 9,829,544.00
Wealth Index MX 0.68 0.12 0.07 0.70 0.94
Income UsS 57,455.86  14,582.81 22,901.00 55,143.50 160,305.00
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Table C.5: Sentiment statistics by country

Variable Country Mean SD Min Median Max
. . MX 0.16 0.12 0.00 0.16 0.95
Sentiment negative
Us 0.16 0.08 0.00 0.17 0.91
. . MX 0.38 0.18 0.01 0.37 0.99
Sentiment positive
Us 0.50 0.13 0.01 0.48 0.99
Hate speech MX 0.04 0.03 0.01 0.04 0.42
Us 0.05 0.02 0.01 0.04 0.33
. MX 0.15 0.07 0.03 0.15 0.89
Offensive language
Us 0.16 0.06 0.03 0.16 0.83
Table C.6: Network statistics by country
Variable Country Mean SD Min Median Max
Network in degree MX 0.14 0.87 0.00 0.00 15.17
Us 0.36 2.17 0.00 0.01 67.43
Network out degree MX 0.14 0.79 0.00 0.00 14.65
Us 0.36 191 0.00 0.01 56.15
Network clos. centr. MX 0.16 0.18 0.00 0.00  0.55
Us 0.34 0.16 0.00 040  0.68
Network pagerank MX 0.00 0.00 0.00 0.00  0.06
US 0.00 0.00 0.00 0.00  0.05
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D Feature Descriptions

Table D.1: Survey indicator description

Label

Description

Years of Schooling

Average years of schooling in municipality (MX) or county (US) according to
census. We approximate years of schooling for the US by attainment statistics
(see main text)

Post Basic Education

Share of population with post basic education

Secondary Education

Share of population with secondary education

Primary Education

Share of population with primary education

Wealth Index

Index based on share of households that have 13 wealth related items according
to the Mexican census, sum across standardized items

Bachelor Degree

Share of county level population with some college level education

Some College

Share of population with a bachelor degree

High School

Share of population with high school education

Income Income statistics provided by US census
Population Population counts according to census

Table D.2: Network indicator description
Label Description

Network in degree

Number outgoing references measured by mentions and quotes (log scale)

Network out degree

Number incoming references measured by mentions and quotes (log scale)

Network clos. centr.

Pagerank for municipalities (MX) or counties (US) according to respective net-
work based on mentions and quotes (log scale)

Network pagerank

Closeness centrality for municipalities (MX) or counties (US) according to re-
spective network based on mentions and quotes (log scale)
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Table D.3: Twitter penetration and usage indicator description

Label

Description

Tweet count

Number of tweets

User count

Number of users

Share weekdays

Share of tweets created during weekdays (Monday-Friday)

Share workhours

Share of tweets created during workhours (Monday-Friday, 8:00am-4:00pm))

Follower count

Median number of followers per user (log scale)

Following count

Median number of friends per user (log scale)

Tweet count

Median number of tweets per user (log scale)

User mobility

Average number of municipalities (MX) or counties (US) users tweet from (log
scale)

iPhone share

Share of tweets sent from an iPhone

Instagram share

Share of tweets sent via Instagram (log scale)

Favorites per tweet

Number of likes per tweet, median (log scale)

Tweets per year

Median number of tweets per year (log scale)

Account age

Age of average account

Table D.4: Twitter penetration and usage indicator description

Label

Description

Account age

Age of average account

Listed count

Average number of public lists user is a member of (log scale)

Followers per following

Number of followers divided by number of accounts a user follows, median (log
scale)

Share quotes

Share of tweets that are quotes (log scale)

Share replies

Share of tweets that are replies (log scale)

Share verified

Share of verified users (log scale)

Tweet length

Average number of characters per tweet (log scale)

Hashtags per tweet

Average number of hashtags per tweet (log scale)

Mentions per tweet

Average number of mentions per tweet (log scale)

Urls per tweet

Average number of urls per tweet (log scale)

Emojis per tweet

Number of emoji per tweet (log scale)
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Table D.5: Error indicator description (both countries)

Label

Description

Error total

Number of errors per character (log scale)

Error casing

Casing error (log scale)

Error confusions

Word confusions (log scale)

Error grammar

Grammar error (log scale)

Error variants

Errors regarding American and British English (log scale)

Error misc

Miscellaneous error (log scale)

Error punctuation

Punctuation error (log scale)

Error repetitions style

Style error related to repetitions (log scale)

Error semantics

Semantic error (log scale)

Error style

Style error (log scale)

Error typography

Typography error (log scale)

Error typos

Typo (log scale)

Table D.6: Error indicator description (country-specific)

Label

Description

Error noun agreement

Noun verb agreement error (log scale)

Error verb agreement

Verb subject agreement error (log scale)

Error norm change

Deviation from linguistic norms (log scale)

Error collocations

Collocation error (log scale)

Error compounding

Compounding error (log scale)

Error context

Context dependent error (log scale)

Error diacritics

Errors regarding accents (diacritic marks, log scale)

Error expressions

Incorrect expression (log scale)

Error misspelling

Misspelling (log scale)

Error nonstandard

Error related to non-standard English (log scale)

Error prepositions

Error related to prepositions (log scale)

Error proper nouns

Error related to proper nouns (log scale)

Error redundancy

Redundancy in text (log scale)

Error redundancy

Redundancy in text (log scale)

Error repetitions

Repetition in text (log scale)
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Table D.7: Topic indicator description

Label

Description

Topic arts & culture

Share of tweets classified into the arts & culture topic (log scale)

Topic business

Share of tweets classified into the business & entrepreneurs topic (log scale)

Topic celebrity

Share of tweets classified into the celebrity & pop culture topic (log scale)

Topic daily life

Share of tweets classified into the diaries & daily life topic (log scale)

Topic family

Share of tweets classified into the family topic (log scale)

Topic fashion

Share of tweets classified into the fashion & style topic (log scale)

Topic films

Share of tweets classified into the films, tv & video topic (log scale)

Topic fitness & health

Share of tweets classified into the fitness & health topic (log scale)

Topic food & dining

Share of tweets classified into the food & dining topic (log scale)

Topic gaming

Share of tweets classified into the gaming topic (log scale)

Table D.8: Topic indicator description

Label

Description

Topic educational

Share of tweets classified into the learning & educational topic (log scale)

Topic music

Share of tweets classified into the music topic (log scale)

Topic news

Share of tweets classified into the news & social concern topic (log scale)

Topic hobbies

Share of tweets classified into the other hobbies topic (log scale)

Topic relationships

Share of tweets classified into the relationships topic (log scale)

Topic science

Share of tweets classified into the science & technology topic (log scale)

Topic sports

Share of tweets classified into the sports topic (log scale)

Topic travel

Share of tweets classified into the travel & adventure topic (log scale)

Topic youth

Share of tweets classified into the youth & student life topic (log scale)

Table D.9: Sentiment indicator description

Label

Description

Sentiment negative

Average share of tweets with negative sentiment in contrast to positive and

neutral

Sentiment positive

Average share of tweets with positive sentiment in contrast to negative and

neutral

Hate speech

Score indicating hate speech, average (log scale)

Offensive language

Score indicating offensive language, average (log scale)
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