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Konstantin Büchela, Martina Jakobb,
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Abstract

This study provides novel evidence on the relative effectiveness of computer-assisted learn-

ing (CAL) software and traditional teaching. Based on a randomized controlled trial in Sal-

vadoran primary schools, we evaluate three interventions that aim to improve learning outcomes

in mathematics: (i) teacher-led classes, (ii) CAL classes monitored by a technical supervisor,

and (iii) CAL classes instructed by a teacher. We find that CAL lessons lead to larger improve-

ments in students’ mathematics skills than traditional teacher-centered classes. In addition,

teachers add little to the effectiveness of learning software. Our results highlight the value of

CAL approaches in an environment with poorly qualified teachers.
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1 Introduction

While net primary school enrollment rates in low-income countries climbed from 56% in 2000 to

81% in 2019, learning outcomes have failed to keep pace. Less than 15% of primary school children

in low-income countries pass minimum proficiency thresholds in reading and math, compared to

about 95% of pupils in high-income countries (World Bank, 2018, p. 8). Public schooling sys-

tems in developing countries face multiple challenges that curb their productivity. These include a

mismatch between national curricula and student abilities (Pritchett and Beatty, 2015), large and

heterogeneous classes (Mbiti, 2016; Glewwe and Muralidharan, 2016), and low levels of effort among

poorly qualified teachers (Chaudhury et al., 2006; Bold et al., 2017a). A much-noticed approach to

overcome these barriers is the use computer-assisted learning software (e.g. The Economist, 2017).

Computer-assisted learning (CAL) has several advantages over traditional teaching methods, as it

allows for self-paced learning that is tailored to the abilities of the student, provides instant feed-

back and is less sensitive to the motivation and skills of teachers. Previous studies on the impact of

technology-based teaching methods on learning outcomes are encouraging. CAL interventions are

usually found to improve students’ test scores and seem to be particularly beneficial if the software

is used to personalize instructions (for a review see Escueta et al., 2020).1

Yet, most studies evaluate CAL lessons that were offered as a supplement to regular classes,

meaning that beneficiaries experienced a considerable expansion of school time compared to the

untreated students in the control group. Thus, it remains unclear whether learning gains are

1Experimental studies on CAL interventions in low- and middle-income countries include Banerjee et al. (2007,

math in Indian primary schools), Carrillo, Onofa and Ponce (2011, language and math in Ecuadorian primary schools),

Yang et al. (2013, language and math in Chinese primary schools), Mo et al. (2015, math in Chinese primary schools),

Lai et al. (2015, language and math in Chinese primary schools), and Muralidharan, Singh and Ganimian (2019,

language and math with Indian secondary school pupils). They consistently report positive intent-to-treat estimates

on learning outcomes that range between 0.1σ and 0.4σ.
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actually attributable to the use of the software or if additional lessons conducted by a teacher might

have produced similar or even better results.2 In addition, there is little evidence on whether CAL

is a substitute for teachers or if it is a complement to them. Finally, previous research has mostly

evaluated specifically customized software which is only available in a limited number of languages.

As a result, many policy-makers with an interest in implementing CAL cannot draw on software

that is readily available and has been successfully evaluated.

Based on a randomized controlled trial, this paper examines the relative effectiveness of pri-

mary school math teachers and a freely available CAL software that features content in more than

30 languages. To disentangle the effects of additional teaching and the use of a learning soft-

ware, the experimental design features three different treatments: The first treatment comprises

additional math lessons instructed by a teacher (henceforth labeled as teacher). The second

and third treatments are additional math lessons based on CAL software; one group of classes is

monitored by technical supervisors (cal + supervisor), while the other group is taught by teach-

ers (cal + teacher). Teachers had to be officially certified to teach math in primary schools,

whereas supervisors were laymen instructed to provide no content-related help to students. CAL

lessons were taught using an offline application of the “Khan Academy” platform, and the three

treatment arms were implemented by the Swiss-Salvadoran NGO Consciente.

We conducted the experiment between February and October 2018 with a sample of 198 primary

school classes spanning grades 3 to 6 in the rural district of Morazán, El Salvador. 29 out of 57

2To our knowledge, the only study that evaluates the effectiveness of CAL lessons as a substitute to regular

teaching in the development context was conducted by Linden (2008) in India. While attending additional CAL

lessons raised math scores of second and third graders, CAL had a negative impact when it substituted regular classes.

As the author points out, the study sample only covers NGO-run schools with well trained staff and innovative

teaching methods. While it is unclear whether these findings translate to the challenging contexts of public education

systems in developing countries, they still raise doubts about the inherent benefits of technology-based instruction.
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eligible schools were randomly selected for program participation. The 158 classes from these 29

schools were then randomly assigned to either Treatment 1 (i.e. teacher, 40 classes), Treatment 2

(i.e. cal + supervisor, 39 classes), Treatment 3 (i.e. cal + teacher, 39 classes) or a program

school control group (40 classes). In the 28 non-program schools, a random sample of 40 classes was

drawn resulting in a “pure” control group that is not subject to potential treatment externalities.

Our analysis establishes four key findings. First, the additional CAL classes had a considerable

impact on students’ math skills. Being assigned to additional CAL lessons increased their math

scores by 0.21σ (p-value<0.01) when overseen by a supervisor and by 0.24σ (p-value<0.01) when

instructed by teachers. These intent-to-treat estimates, which reflect a program attendance rate

of 59%, correspond to the average increase in math abilities over 0.6 school years. Using the

treatment assignment as instrumental variable for attendance, we estimate that participating in all

46 additional CAL lessons (each lasting 90 minutes) translates to average learning gains of 0.38σ

(p-value<0.01) and 0.40σ (p-value<0.01), respectively. This is equivalent to the average increase in

math abilities during 1.1 school years.

Second, additional CAL lessons were more productive than the additional math lessons in-

structed by a teacher. The intent-to-treat effect of being assigned to additional teacher-led classes

without CAL was 0.15σ (p-value=0.01). Hence, students assigned to cal + teacher outper-

formed students assigned to teacher by 0.09σ (p-value=0.10). The CAL treatment overseen by

technical supervisors (cal + supervisor) was also more successful in raising student learning than

traditional teaching, even though this difference is not statistically significant (p-value=0.24). The

advantage of CAL lessons relative to teacher-centered lessons was most pronounced in the domain

of number sense and elementary arithmetic, and less so with respect to geometry, measurement and

data. Focusing on number sense and elementary arithmetic, the difference between the CAL and

non-CAL treatments increases to 0.11σ (p-value=0.06) for CAL instructed by teachers and to 0.09σ
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(p-value=0.12) for the CAL monitored by supervisors.

Third, we present multifaceted evidence that points to a low productivity of teachers. The

difference in learning gains between program school control classes and those classes receiving addi-

tional teacher-centered math lessons was close to zero and statistically insignificant (p-value=0.78).

Similarly, teachers did not provide much “value added” to the learning software: the estimated

impact for CAL lessons instructed by teachers is slightly higher than for CAL lessons conducted by

supervisors but the difference is negligible and statistically insignificant (p-value=0.65). Moreover,

the productivity of teachers dropped as the complexity of concepts increased: The impact of ad-

ditional math lessons instructed by teachers decreased with both the grade level and the baseline

achievement of their students, while the effect of the CAL-based lessons was largely insensitive to

students’ grades and initial ability levels.

To gain a better understanding of the mechanisms behind these patterns, we conducted a com-

prehensive teacher math assessment covering the primary school curriculum of El Salvador. This

assessment documents inadequate content knowledge among the teachers hired by the NGO. The

math content knowledge of the contract teachers is positively correlated with student learning

gains in both traditional (coef.=0.08, p-value=0.28) and CAL-based math lessons (coef.=0.09, p-

value=0.14), whereas the math score of technical supervisors is, as one would expect, virtually

orthogonal to students’ learning gains (coef.<0.01, p-value=0.94). The obtained point estimates

for teachers almost perfectly correspond to international evidence on the impact of teacher content

knowledge on learning outcomes (for a review see Table 5 in Brunetti et al., 2020) and hence cor-

roborate the hypothesis that the inadequate subject mastery of the contract teachers impaired the

impact of additional math lessons.

Importantly, regular math teachers in local primary schools are even less proficient in their

subject than the contract teachers hired by the NGO. While the median contract teacher correctly
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answered 66% of 50 questions on an assessment covering the curriculum of grade levels two to six,

the median regular teacher correctly solved only 44% of the same items. Potential productivity

gains resulting from an introduction of CAL to regular classes thus are likely to be larger than

suggested by our estimates.

Fourth, we document substantial treatment externalities. At endline, students in program school

control classes outperformed students in pure control classes by 0.14σ (p-value=0.02), although they

were only indirectly exposed to the three treatments. In particular, we find evidence for spillovers

from the two CAL treatments. While we cannot comprehensively pin down the mechanisms at work,

suggestive evidence points toward social learning. At the same time, the data rejects hypotheses

operating via direct exposure of students in control classes to the treatments (i.e. non-compliance)

or testable hypotheses on behavioral adjustments in response to the experimental design.

This study makes several contributions to the literature on educational interventions in devel-

oping countries. First, it improves our understanding of how CAL performs relative to alternative

teaching models. To our knowledge, this is the first well-identified study assessing the value-added

of CAL in a public school setting of a developing country. As opposed to Linden (2008), who doc-

uments a negative value-added of CAL in NGO-administered schools in India, our findings suggest

that CAL has the potential to outperform traditional teacher-led instruction, especially if teachers

are poorly qualified. According to our estimates, it would take a teacher at the 91th percentile of

the local teacher ability distribution to achieve the same learning gains as observed in CAL lessons

overseen by a supervisor. This corresponds to a teacher in the 75th ability percentile among the

contract teachers hired for this experiment or to 88% correct answers in the administered teacher

assessment. While CAL has been praised in terms of its individualized and interactive pedagogy

(e.g. Banerjee et al., 2007; Muralidharan, Singh and Ganimian, 2019), these numbers highlight that

it may also be a promising approach to mitigate the adverse effects of teachers’ inadequate content
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knowledge and pedagogical knowledge, as it has been recently documented for several developing

countries (e.g. Bold et al., 2017a).

Second, we present the first experimental test of the complementarities between teachers and

learning software. In our setting, teachers play a marginal role in the success of technology-based

instruction, with CAL lessons being almost equally effective when conducted by a supervisor rather

than a officially certified teacher. Thus, teachers and learning software are likely substitutes and

not complements, at least in a public schooling system staffed by poorly qualified teachers. Only

few experimental studies aspire to distinguish between complementary and substitutable inputs

entering the educational production function; notable exceptions are recent papers by Mbiti et al.

(2019) on the complementarity between school grants and teacher incentives in Tanzanian primary

schools, and by Attanasio et al. (2014) on the complementarity between psychosocial stimulation

programs and nutritional supplements in early childhood development.

Third, we contribute to the broader literature on treatment externalities (e.g. Miguel and Kre-

mer, 2004; Baird et al., 2015). By including control classes from treatment schools as well as

spatially separated pure control classes from non-treatment schools into our experimental design,

this study provides a reasonable identification of potential externalities. Our findings underscore the

importance of appreciating the possibility of externalities in the design of experimental evaluation

studies, even when such effects appear unlikely at first sight. Moreover, the presence of positive

treatment externalities provide a strong rationale in favor of scaling the evaluated program.

Finally, this study adds to the accumulated evidence on the effectiveness of CAL by evaluating

a widely available off-the-shelf software. In contrast to software tested in previous evaluations,

Khan Academy is free of charge and features extensive math content in more than 30 languages.3

3The full version is available in 16 languages including Spanish, and a subset of content is available in about 20 lan-

guages. Another off-the-shelf learning software that has been successfully evaluated is Mindspark (see Muralidharan,

Singh and Ganimian, 2019), which operates in English and Hindi for math and language training.
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Since the employed software is arguably one of the most important features of a CAL intervention,

our findings bear direct policy relevance for educational decision-makers around the globe that are

looking for a readily available learning software suitable in non-English speaking countries.

2 Context and Intervention

El Salvador is a lower middle-income country in Central America. The country’s net primary

enrollment rates are estimated at 80%, which is 7 percentage points below the average of lower

middle-income countries. While most children attend primary school, enrollment declines to 67%

at the secondary level and to 28% in tertiary education.4

The department of Morazán is a poor and rural region in the northeast of the country with

roughly 200,000 inhabitants. An average person in Morazán lives on 3.80 USD per day and, accord-

ing to national definitions, almost 50% of the households face multifaceted poverty. While Morazán

ranks second-last among all Salvadorian departments in terms of adult literacy, its secondary school

students came forth in the 2018 “PAES” national examinations (Digestyc, 2018; MINED, 2018).

Our math assessments with 3,528 third to sixth graders conducted in February 2018 reveal that

primary school children in Morazán barely grasp the most elementary concepts in math. Figure 1a

shows that the share of correct answers to first and second grade questions increases from 27%

among third graders to 57% among sixth graders, who by then should have attended more than

1,000 math lessons. To put these numbers into context, we conducted the same test with 164

pupils in Switzerland, who answered on average between 85% and 92% of the items correctly.

Even the worst performing Swiss third grader outperformed the median sixth grader in Morazán.

Similarly flat learning curves among primary school children have also been reported for other low-

4Enrollment statistics according to the World Development Indicators provided online by the World Bank, see

https://data.worldbank.org/indicator (last access: 26.10.2019)
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(a) Share of correct answers on 1st/2nd grade math
questions among Salvadoran and Swiss pupils.

(b) Assessed grade level in math among third to
sixth graders in Morazán early in their school year.

Figure 1: Math learning outcomes in Morazán (Panels a & b) and Switzerland (Panel a).
Note: Panel (b) illustrates the achieved proficiency in math (measured in grade levels) among third to sixth graders
in Morazán at the beginning of their school year. A student, each represented by a dot, needs to score at least 50%
correct answers on grade specific items in order to reach the next proficiency level. Since the test was administered in
the first weeks of their school year, a third grader answered first and second grade items and therefore may be assigned
to grade level 2, 1 or <1 depending on her performance. The size of the bubbles are proportional to the number of
students they represent. Further explanations are provided in appendix A.1. Source: Baseline data, February 2018.

and middle-income regions across the globe, including countries in Western Africa, Eastern Africa,

Central America, and South East Asia (e.g. Beatty et al., 2018; PAL, 2020).

Several challenges that plague Morazán’s schooling system can account for its low productiv-

ity. For instance, our monitoring data from school visits reveal high rates of teacher absenteeism

suggesting that, on average, 25% of regular lessons are canceled. Low teacher motivation mixes

with outdated pedagogical techniques that essentially follow the logic of “copy, memorize, and re-

produce“. And despite relatively small class sizes – the pupil-teacher ratio averages 28-to-1 at the

national level and 19-to-1 in our sample – heterogeneous student performance and an overambitious

curriculum make it difficult to teach at an appropriate level. As Figure 1b shows, third to sixth

graders lag considerably behind the official curriculum and this gap widens as children move up

to higher grade levels. Moreover, performance heterogeneity within classes is considerable. In the

majority of classes, students’ math ability spans three grades or more (for further explanations see

appendix A.1). In general, the public schooling system in El Salvador faces challenges similar to
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those reported for other low- and middle income countries.5

The Salvadoran Ministry of Education has recently put considerable effort into addressing learn-

ing deficiencies in public schools. While primary schooling has been typically confined to either

morning or afternoon lessons throughout El Salvador, a recent policy aims to extend school time

over a full day and to complement traditional teaching with innovative learning approaches (MINED,

2013). The government hopes that longer schooldays will not only boost learning outcomes, but also

shield children from the influence of criminal gangs. Within the scope of this countrywide program,

the Ministry of Education seeks to cooperate with NGOs in order to collectively promote an open

and flexible curriculum. While all schools received official instructions to expand their school days,

most of them have not put the policy into practice due to a lack of resources to pay for further

teaching staff.

Intervention. In this context, we evaluate the impact of an educational initiative on math abilities

of primary school children of grades 3 to 6. The program features three intervention arms that

offer two additional lessons of 90 minutes per week and almost double the beneficiaries’ number

of math lessons during the program phase. The first intervention arm comprises additional math

lessons instructed by a teacher without using software. The second and third intervention arms are

5The pupil-teacher ratio in middle-income countries averages 24-to-1, while it climbs to 40-to-1 in low income

countries (Unesco, 2019); in some contexts, such as rural India, it can even reach 90-to-1 (Mbiti, 2016). Besides

the large class size, students’ abilities and preparation levels are often very heterogeneous, which is also the case

in our data. For example, Muralidharan, Singh and Ganimian (2019) report for their sample of 116 Indian middle

schools that students’ ability in the median classroom spans four grades in both math and language, while we obtain

three grade levels for primary schools. Moreover, Pritchett and Beatty (2015) show that the pace of learning is very

slow in developing countries and that there is a mismatch between curriculum and student abilities. This is consistent

with what we observe in Figure 1b. Finally, low teacher motivation is a well-known issue: Chaudhury et al. (2006)

find that 19% of teachers in developing countries are absent during unannounced visits, while our monitoring data

suggests that 25% of classes in Morazán’s primary school are canceled.
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additional math lessons based on computer-assisted learning software; one group of classes is taught

by teachers, while the other group is monitored by supervisors.

The CAL-lessons in the second and third intervention arm were based on an offline application

of the learning platform Khan Academy, which is known as KA Lite. This freely available software

provides a wide range of instructional videos and exercises for every difficulty level. While the

learning tool is not directly adaptive, it allows teachers to track the progress of each student and

assign appropriate contents based on prior performance. To tailor instruction to students’ learning

levels, a set of working plans covering different content units was prepared. Based on a placement

test, children received a plan that was viewed as adequate for their respective level and they could

then proceed to subsequent plans at their own pace. Since one computer was available per student,

each child could follow its individual learning path. Typically, students started with materials from

lower grades and then slowly progressed towards contents corresponding to their actual grade level.

A similar methodology was used for the first intervention arm that features more traditional math

lessons instructed by a teacher. According to their initial math skills, children were arranged in two

different table groups where they worked on plans tailored to their ability. Teachers were instructed

to explain important concepts, correct students’ work at home and promote children (or entire

table groups) to subsequent plans when appropriate. While this strategy only allows for a crude

approximation of teaching to each child’s ability level, it represents a degree of individualization

that can realistically be achieved without the help of technology.

To pay credit to the social component of learning, all treatments combined individualized learn-

ing with educational games. For this purpose, a manual containing animation, concentration and

math games was developed. The manual compiles simple techniques to promote students’ collec-

tive learning as well as their motivation to participate in class. Games were usually played at the

beginning or at the end of each session. While supervisors were instructed to use animation and
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concentration games, teachers were additionally introduced to a series of math games.

The contracted teachers were required to be officially certified to instruct grades 3 to 6 in math.

That is, they all possessed a university degree and had either completed a teacher education, or

another study program combined with a one-year pedagogical course. Teachers were selected based

on a brief math assessment and a job interview. They were employed on short-term contracts and

earned 300 USD per month for assuming four classes.6 For lessons that were canceled, teachers

received no remuneration. To optimize the comparability of treatments, all teachers were assigned

an equal number of CAL and non-CAL lessons. Before and during the intervention, teachers were

trained to operate the learning software and they reviewed mathematical concepts as well as central

pedagogical strategies including the use of educational games. Teaching was tightly monitored by

our partner NGO through monthly feedback meetings at the NGO’s headquarters and unannounced

classroom visits during the implementation phase.

The supervisors received only technical training and were paid substantially less than teachers,

that is 180 USD for taking care of four classes. They were required to have minimal IT skills

and some experience in dealing with children, but no contracted supervisor possessed a degree in

education or teaching credentials. During the intervention, supervisors were instructed to restrain

from providing any content-specific help. Like teachers, supervisors were employed on short-term

contracts and were paid conditional on the number of classes they conducted.

3 Research Design

This study is built around an RCT to identify the causal impact of the three interventions arms. It

started in February 2018 with a baseline assessment and a survey covering all control and program

classes. The additional math classes began in April 2018 and were implemented until the end of the

6This corresponds to 8 × 90 minutes of teaching per week, or – including preparatory work – to a 60% job.
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Selection criteria: 
• Size 
• Security 
• Accessibility 
• Electricity 

 
T3:  

CAL + Teacher 
39 classes 

 

T1:  
Teacher 

40 classes 

Control: 
40 classes 

 

Preselection: 
57 Schools 
320 classes 

Excluded 
Schools: 
28 Schools 
162 classes 

Selected Schools: 
29 Schools 
158 classes 

Randomization Stage 2b 
• Cell-wise matching with control 

classes from program schools 
• Criteria: School Size, class size, 

grade level, computer access 

T2:  
CAL + Supervisor 

39 classes 

Test for 
spillovers Control: 

40 classes 
 

Population: 
Grades 3-6 

~300 Schools 

Randomization Stage 1 
Stratified by: 
• School size 
• Computer room 
• Population density 

Randomization Stage 2a 
• Rerandomization following Morgan & Rubin (2012) 
 
• Cutoff criterion: Between 9 and 11 classes per 

treatment and grade  

Figure 2: Sampling and randomization scheme.

school year in fall 2018; the school year in El Salvador starts in mid-January and ends in November.

The endline tests took place in October 2018, six months after the start of the intervention. Again,

all program and control classes took part in the endline tests.

3.1 Sampling and Randomization

Our sampling and randomization scheme has three layers, as exemplified in Figure 2. Starting point

are all 302 primary schools in Morazán. In coordination with the NGO and the regional Ministry

of Education, we defined the following eligibility criteria for a preselection of primary schools:

� School size, eliminates 221 schools: A school was considered too small, if it had integrated

classes (across grades) or gaps in its grade structure (i.e. not at least one class per grade).

This guarantees that every eligible school has at least four different classes in grades 3 to 6,

and therefore can participate with at least (i) one cal+teacher, (ii) one cal+supervisor,

(iii) one teacher, and (iv) one control class;
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� Security, eliminates 14 of the remaining 81 schools: Based on an assessment by the local

staff and the regional Ministry of Education, schools located in areas dominated by criminal

gangs were excluded due to security concerns;

� Accessibility, eliminates 7 of the remaining 67: Schools where access by car is difficult were

discarded. To inform this decision we relied on Google-Maps driving times and a validation

by local staff and the regional Ministry of Education;

� Electricity, eliminates 3 of the remaining 60 schools: Schools without a (close-by) power

supply did not qualify for the program.

After this pre-selection, 57 schools with a total of 320 eligible classes and about 6,400 students

remained in the sample. In randomization stage 1, 29 of the 57 schools were randomly chosen to

participate in the program. To improve balance, the assignment was stratified by school size, local

population density and students’ access to a computer room.

In randomization stage 2a, we randomly assigned the 158 classes in the 29 selected program

schools to the control group or one of the three intervention arms. Following Morgan and Rubin

(2012) we re-run the randomization routine until the interventions were balanced across schools and

grades. This mechanism assigned 39 classes to cal+teacher, 39 classes to cal+supervisor,

40 classes to teacher, and 40 classes to the control group. We account for the re-randomization

procedure when comparing estimates within program schools by computing randomization inference

test statistics based on 2,000 random draws subject to the identical cut-off criterion. Our choice to

run 2,000 draws is guided by Young (2019, p. 572), who finds no appreciable change in rejection rates

beyond this threshold. To implement the randomization tests we rely on Stata’s ritest-package

developed by Hess (2017).

As prominently discussed in Miguel and Kremer (2004), interventions can have spillover effects
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on non-participating students from the same school or area. A unique feature of our design allows

us to estimate the size of such treatment externalities. For this purpose, in randomization stage 2b,

40 additional control classes from non-treatment schools were included in the study. These addi-

tional “pure” control classes are spatially separated from the intervention, and thus not affected by

the NGO’s work. The pure control classes were randomly selected from the 28 control schools by

matching them cell-wise to the distribution of control classes from program schools, accounting for

school size, grade level, class size and students’ access to computers.

This procedure yields five different groups of primary school classes, namely the 39 or 40 classes

assigned to each of the three treatment groups, 40 control classes from the 29 program schools, and

40 pure control classes from the 28 control schools.

3.2 Data

In the course of the evaluation, four types of data were gathered: (i) Math learning outcomes of

students were assessed before and after the intervention, (ii) socio-demographic statistics stem from

a survey that children answered prior to the baseline math assessment, (iii) administrative data

on schools was collected between October 2017 and February 2018, and (iv) monitoring data was

recorded during unannounced school visits throughout the program phase. Table 1 shows summary

statistics for the main variables collected before the start of the program as well as absence rates

at the endline and baseline assessment. In particular, it displays means and standard errors for the

different variables by treatment status, and tests whether the mean is equal across the five groups.

While the treatment and control groups do not differ significantly on any observable dimension

at baseline, Table 1 shows a sizeable increase in the absence rates between the baseline and the

endline assessment. Before both rounds of data collection, we updated comprehensive class lists of

registered pupils. This revealed that large numbers of children either migrated out of Morazán or
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discontinued their education. We achieved an attendance of about 95% registered pupils in both

rounds, but since classes shrank during the school year, the overall attrition at endline almost hits

the 10% mark. Importantly, Table 1 does not point toward systematic differences in attrition rates

by treatment status.7 Moreover, compliance with the experimental protocol was very good in the

sense that only 38 out of 3197 students (i.e. 1.2%) within our estimation sample switched between

different classes, grades or schools.

3.2.1 Math Learning Outcomes

The math assessments include 60 items covering the primary school curriculum of El Salvador.

The weighting of questions across the three main topics (a) number sense & elementary arith-

metic (∼65%), (b) geometry & measurement (∼30%), and (c) data & statistics (∼5%) was closely

aligned with the national curriculum. Moreover, we verified the appropriateness of each question

through a careful mapping to the national curriculum and a feedback loop involving the regional

Ministry of Education and local education experts. The math problems presented to the chil-

dren mostly required a written answer (as opposed to a multiple choice format) and were inspired

by El Salvador’s official textbooks as well as various international sources of student assessments.

Section B in the appendix explains the design of our assessments step by step.

In the appendix, we further present detailed statistics on the distribution of student test scores

and the difficulty of the items. Top or bottom coding is neither an issue with respect to students nor

the selected items: Table B.2 shows that virtually all items (except one for fifth graders in the endline

assessment) were at least once answered correctly or incorrectly. Likewise, Table B.1 documents

that only about 0.5% of test-takers scored zero points, while nobody achieved the maximum score.

7We examine this more closely in Table A.1 in the appendix, confirming that the treatment status is not signifi-

cantly correlated with presence at the endline test.
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Table 1: Balance at baseline and absence rates during assessments

(1) (2) (3) (4) (5) (6)
Panel A: T1: Math T2: CAL T3: CAL Within school Pure control

Math scores (N=3528) w. teacher w. supervisor w. teacher controls classes p-value

%-share correct answers 30.33 33.47 31.97 32.60 30.80 0.45
(1.80) (1.90) (2.07) (1.32) (2.00)

Std. IRT math score 0.01 0.18 0.08 0.08 0.00 0.72
(0.14) (0.14) (0.16) (0.10) (0.15)

Panel B: Sociodemographics (N=3528)

Female student 0.50 0.52 0.55 0.51 0.49 0.43
(0.03) (0.04) (0.04) (0.03) (0.04)

Student age =0.09 =0.01 0.02 =0.03 =0.03 0.70
(0.08) (0.09) (0.09) (0.06) (0.09)

Household size 5.56 5.61 5.57 5.55 5.50 0.92
(0.13) (0.12) (0.12) (0.08) (0.12)

Household assets index 0.55 0.55 0.54 0.56 0.56 0.88
(0.02) (0.02) (0.02) (0.02) (0.02)

Panel C: Class room variables and absence rates during assessments (N=198)

Class size 18.40 19.33 18.69 18.13 18.32 0.92
(1.37) (1.35) (1.37) (0.96) (1.54)

Female teacher 0.80 0.77 0.77 0.73 0.55 0.14
(0.10) (0.10) (0.10) (0.07) (0.11)

Absence rate at baseline (%) 3.88 3.15 5.39 4.39 3.38 0.59
(1.33) (1.16) (1.74) (0.95) (1.15)

Absence rate at endline (%) 9.09 9.72 10.50 9.99 8.10 0.72
(2.09) (2.04) (2.18) (1.63) (2.00)

Panel D: School variables (N=49) Treatment Pure control

schools schools p-value

# classes grade 3–6 5.48 6.25 0.32
(0.43) (0.76)

Computer lab 0.79 0.75 0.73
(0.08) (0.13)

Local population density 0.18 0.19 0.63
(0.01) (0.02)

Notes: This table presents the mean and standard error of the mean (in parenthesis) for several characteristics of
students (Panels A & B), class rooms (Panel C), and schools (Panel D), across treatment groups. The student sample
consists of all students tested by the research team during the baseline survey in February 2018. Column 6 shows the
p-value from testing whether the mean is equal across all treatment groups. IRT-scores are standardized such that
µ = 0 and σ = 1 for the pure control group. The household asset index measures what share of the following assets
a household owns: Books, electricity, television, washmachine, computer, internet and car. Local population density
is the municipality’s population density measured in 1000 inhabitans per km2. Standard errors are clustered at the
class level in Panels A & B, and at the school level in Panel C. * p<0.10, ** p<0.05, *** p<0.01.
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In general, the assessments seem to nicely capture the different performance levels, with the scores

being roughly normally distributed around a median of 30% (3rd graders) to 40% (6th graders)

correct answers (see Figure B.2).

A particularly nice feature of our math assessments is that they allow us to project all outcomes

on a common ability scale by drawing on techniques from psychology, that is Item Response The-

ory (IRT)(e.g. de Ayala, 2009). This implies that we can directly compare children across grades

and express their learning gains between the baseline and the endline assessment in terms of how

many additional school years would be required to reproduce the same effect. The conversion of

our estimates into program effects measured in terms of additional school years is explained in the

appendix B.

3.2.2 Socio-Demographic Survey

The socio-demographic survey was distributed 15 minutes before the baseline math assessment

began. It asked students about their age, gender, household composition, household assets and

parental education. Since literacy can be an issue, questions were illustrated with pictures and the

enumerators helped children to understand and answer them correctly.

3.2.3 Administrative Data on Schools

In the run-up to the study, we collected various administrative data on Morazán’s school. While the

government gathers thematically vast information on the school environment through a paper-and-

pencil survey administered to school principals, the data turned out to be of rather poor quality.

To obtain usable information on the class structure, enumerators had to call each school at the

beginning of the school year, because the planning data from official sources was too unreliable.

Moreover, the paper-and-pencil surveys left many missing values, so that we had to discard most

items due to an insufficient coverage. We therefore decided to use a minimal set of school level
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variables, which were either comprehensively available, relatively cheap to supplement, or essential

for the study. These include the number of grade 3 to grade 6 classes (i.e. school size), information

on the presence of gangs (i.e. security at school), accessibility measures based on Google-Map

estimates and validated by local staff, power supply according to the administrative survey and

validated via phone calls, student access to computer labs according to the administrative survey

and validated via phone calls, and local population density from the National Bureau of Statistics.

3.2.4 Monitoring Data

From May to September 2018, NGO staff made on average five unannounced school visits (about

1000 visits in total) to collect monitoring data. These visits covered regular lessons in pure control

schools as well as both regular and treatment lessons in program schools. The enumerators collected

data on teacher attendance, student attendance, computer usage, and the implementation of the

additional math lessons in the afternoon.

4 Results

4.1 The Overall Program Effects

We begin by estimating intent to treat (ITT) effects of being assigned to one of the three pro-

grams (i.e. βT1, βT2, βT3) or the program school control classes (i.e. βCX) using

Y EL
icsk = α+βT1T1csk +βT2T2csk +βT3T3csk +βCXCXcsk +δY BL

icsk +X
′
icskγ+V

′
cskλ+φk +ε1icsk, (1)

where Y EL
icsk is the endline math score of student i in class c, school s and stratum k; math scores

are either measured as percentage of correct answers or as the IRT-score normalized to µ=0 and

σ=1 based on the baseline score of the pure control group. The binary treatment indicators are
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defined as follows: T1 equals one for those assigned to extra math lessons conducted by a teacher,

T2 equals one for those assigned to extra CAL lessons overseen by a supervisor, T3 equals one for

those assigned to extra CAL lessons instructed by a teacher, and CX equals one for those assigned

to program school control classes that are potentially subject to externalities. Our control variables

include Y BL
icsk which stands for the baseline math score, Xicsk representing a set of student-level

control variables (i.e. age normalized by the average age at the same grade level, gender, household

size and household assets), and Vcsk comprising a set of classroom-level variables (i.e. indicator for

grade level, class size and teacher gender). Finally, φk stands for k strata fixed effects and ε1icsk

represents the error term.

The upper panel of Table 2 displays the program effect relative to pure control classes (i.e. β̂T1,

β̂T2, β̂T3 and β̂CX) and the lower panel of Table 2 presents estimates for the pairwise differences

between the three treatment groups in program schools. The lower panel reports p-values obtained

from a randomization inference test statistic based on 2,000 random draws subject to the identical

cut-off criterion as used in our re-randomization scheme (see section 3). In the upper panel, however,

p-values are based on traditional clustered standard errors, since the assignment to program schools

and pure control schools did not involve re-randomization.8

Students who were assigned to one of the treatments perform significantly better in the end-

line assessment than students assigned to the pure control classes. Compared to the pure control

8Moreover, we cannot properly apply randomization inference to the upper panel due to missing information on

ability levels of non-selected classes from pure control schools. As we show in appendix A.3, randomization inference in

the upper panel is based on draws that include on average 37% missing data points. Consequently, p-values obtained

from these randomization tests increase by a factor of about 5 to 10 compared to p-values from traditional inference

with clustered standard errors. While this is clearly too conservative, our main conclusion are not altered when

we apply randomization inference to the upper panel (see Table A.3). The only notable difference is that program

externalities, captured by βCX , turn insignificant with p-values around 0.13. When we apply traditional inference to

the lower panel, as shown in Table A.2, changes in p-values are very small and do not show a clear pattern.
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Table 2: ITT-Estimates on the effects of the different interventions on children’s math scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.904∗∗∗ 2.643∗∗ 0.165∗∗∗ 0.152∗∗

(0.005) (0.012) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗∗ 0.226∗∗∗ 0.214∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.595∗∗ 2.407∗∗ 0.147∗∗ 0.137∗∗

(0.011) (0.017) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.191 1.226 0.061 0.063

p-value (βT4=0) (0.214) (0.194) (0.268) (0.244)

βT5 := βT3 − βT1 = 0 1.650∗ 1.686∗ 0.084 0.086

p-value (βT5=0) (0.069) (0.059) (0.117) (0.102)

βT6 := βT3 − βT2 = 0 0.459 0.460 0.024 0.023

p-value (βT6=0) (0.618) (0.615) (0.650) (0.653)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

students, participants assigned to extra classes with math teachers (i.e. T1) perform 2.6 percent-

age points or 0.15σ better, students assigned to CAL classes with supervisors (i.e. T2) perform

about 3.9 percentage points or 0.22σ better, and students assigned to CAL classes with a teacher

(i.e. T3) perform 4.3 percentage points or 0.24σ better. Remarkably, students in control classes

within program schools (i.e. CX) also score 2.4 percentage points or 0.14σ higher than students

in pure control classes. As we discuss in section 5.1, our analysis points towards spillovers from

CAL-lessons to program school control classes, while we find no evidence for direct exposure of

control units (i.e. non-compliance) or behavioral changes at the level of students, regular teachers
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or school administrations.

Finally, we test whether the observed gaps in the endline performance of students assigned to

one of the three treatments (defined as βT4, βT5, and βT6) are statistically different from zero.

While we find that the two CAL treatments outperform additional math classes, only the difference

between additional math classes and CAL classes conducted by a teacher is statistically significant

at the 10%-level: students assigned to cal+teacher outperform students assigned to teacher

by 1.7 percentage points or 0.085σ with p-values ranging from 0.059 to 0.117.

On the one hand, this is novel evidence that CAL delivers sizable learning gains in a Latin

American context using off-the-shelf learning software: Expressing the estimates in terms of school

years suggests that the effect of the CAL interventions is equivalent to the average student’s progress

in 0.6 to 0.7 school years (see appendix B for details on this conversion). On the other hand,

traditional math classes conducted by teachers are relatively ineffective compared to additional

math lessons with CAL-software: In comparison to the program school control classes, boosting the

supply of conventional math lessons by roughly 80% delivered no measurable impact. Importantly,

the performance difference between CAL classes taught by teachers and additional teacher-centered

math classes is statistically (marginally) significant. We interpret this as suggestive evidence that

the learning gains reported in a series of CAL-evaluations can – at least partially – be attributed

to the learning software and not necessarily to the increase in the number of math lessons.

4.2 Heterogeneity Analysis

We now examine effect heterogeneity along several dimensions. We first decompose program effects

by subtopics, before we explore effect heterogeneity along baseline ability, grade level and class size.
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4.2.1 Program Effects by Subtopic

In this subsection, we explore the impact of the three interventions on learning outcomes by topics.

In accordance with the official curriculum, 65% of the items cover number sense and arithmetic

(NSEA), 30% of the items cover geometry and measurement (GEOM), and 5% of the items cover

data, probability and statistics (DSP). In particular, we re-estimate equation (1) but calculate

separate math scores based on (i) NSEA-questions and (ii) GEOM- as well as DSP-questions.

The ITT-effects on students’ NSEA skills are shown in Table 3. We find that both CAL treat-

ments had a more pronounced effect on the NSEA score than on the overall math ability. Students

who were assigned to CAL classes with supervisors score 4.6 percentage points or 0.24σ higher in

NSEA questions than students assigned to pure control classes; this is an increase of 10% to 20%

compared to the overall impact reported in Table 2. The NSEA math score of students assigned

to CAL classes with teachers is 4.9 percentage points or 0.26σ higher than the score of students

assigned to pure control classes; again this effect is 10% to 15% larger compared to estimates based

on all questions. Since the impact on the NSEA math score remains about the same for students

receiving additional math classes instructed by teachers, the gap between CAL and conventional

teaching widens.

When we compare the learning gains attributed to CAL with the gains attributed to the addi-

tional math classes without software the differences range from 1.7 to 2.1 percentage points or from

0.092σ to 0.115σ. The corresponding p-values lie between 0.046 and 0.055 for the CAL classes with

teachers and between 0.093 and 0.129 for CAL classes with supervisors. Hence, when focusing on

NSEA questions, the overall pattern remains qualitatively similar to the estimations including all

subject domains, but the gap between the two CAL treatments and additional math classes in the

traditional sense (i.e. without the use of software) becomes more pronounced.

Table 4 shows the results that are based on GEOM- and DSP-items. Focusing on these topics
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Table 3: ITT-Estimates on the effects of the interventions on children’s NSEA-scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 3.174∗∗∗ 2.849∗∗∗ 0.166∗∗∗ 0.146∗∗

(0.002) (0.006) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.907∗∗∗ 4.581∗∗∗ 0.258∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 5.225∗∗∗ 4.895∗∗∗ 0.279∗∗∗ 0.259∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.711∗∗∗ 2.463∗∗ 0.145∗∗ 0.130∗∗

(0.008) (0.012) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.733 1.732∗ 0.092 0.091

p-value (βT4=0) (0.103) (0.093) (0.129) (0.115)

βT5 := βT3 − βT1 = 0 2.051∗∗ 2.047∗∗ 0.113∗ 0.112∗

p-value (βT5=0) (0.046) (0.047) (0.051) (0.055)

βT6 := βT3 − βT2 = 0 0.318 0.315 0.021 0.021

p-value (β6=0) (0.750) (0.752) (0.706) (0.714)

Adjusted R2 0.62 0.63 0.65 0.65
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

reduces the impact of both CAL treatments. The effects compared to pure control classes remain

significant but they decrease considerably in magnitude. The results show, for instance, that addi-

tional CAL lessons conducted by a teacher increase the NSEA-score by about 5 percentage points,

while the increase in the combined GEOM- and DSP-score is only 3.5 percentage points. Since this

drop is less pronounced for those classes receiving additional math lessons instructed by a teacher,

the within treatment school comparisons yield insignificant effects.

These results show that computer-assisted learning software can be a valuable substitute to

traditional teaching, but its impact seems to be sensitive to the concepts that are taught. While we
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Table 4: ITT-Estimates on the effects of the interventions on children’s GEOM & DSP -scores

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.433∗ 2.132∗ 0.155∗∗ 0.140∗

(0.055) (0.093) (0.035) (0.057)
T2: CAL-Lessons with Supervisor 3.207∗∗∗ 3.014∗∗ 0.196∗∗∗ 0.187∗∗∗

(0.009) (0.014) (0.006) (0.009)
T3: CAL-Lessons with Teacher 3.646∗∗∗ 3.472∗∗∗ 0.201∗∗∗ 0.193∗∗

(0.006) (0.008) (0.008) (0.010)
CX: Control Classes for Externalities 2.773∗∗ 2.561∗∗ 0.159∗∗ 0.149∗∗

(0.032) (0.048) (0.036) (0.050)

βT4 := βT2 − βT1 = 0 0.775 0.882 0.041 0.047

p-value (βT4=0) (0.498) (0.432) (0.543) (0.464)

βT5 := βT3 − βT1 = 0 1.213 1.340 0.046 0.053

p-value (βT5=0) (0.279) (0.221) (0.481) (0.412)

βT6 := βT3 − βT2 = 0 0.438 0.458 0.005 0.006

p-value (β6=0) (0.692) (0.669) (0.934) (0.926)

Adjusted R2 0.46 0.47 0.49 0.50
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: In the upper panel (coef. βT1−βCX), p-values are based on traditional clustered standard errors. In the lower
panel (coef. βT4 − βT6), p-values are based on a two-sided randomization inference test statistic that the placebo
coefficients are larger than the actual; randomization inference is based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

obtain a consistently positive value-added of cal + teacher and cal + supervisor relative to

teacher, the measured differences seem primarily driven by the pronounced improvements in the

domains of number sense and elementary arithmetic. The CAL interventions were less successful in

shifting abilities to solve questions on geometry, measurement, data and statistics: The difference

in point estimates (see β̂T4 and β̂T5) decrease by about 20%, and the p-values clearly exceed the

0.1-threshold for statistical significance.

Overall, this sub-analysis also points toward a strikingly low productivity of teachers: Regardless

of the domain, classes receiving additional math lessons conducted by teachers do not perform better
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than control classes subject to externalities. However, the pronounced differences across domains

also suggest that CAL may not be well-equipped to substitute for all aspects of the complex task a

teacher is expected to perform. While it may be relatively easy to automate the correction of errors

in simple arithmetic exercises, evaluating students’ progress and providing helpful feedback on tasks

that require creativity or connected thinking may be much harder for a computer. Moreover, CAL

may face a difficult job in connecting instructed concepts to real world experiences. While a teacher

can, for example, distribute rulers to make students measure different objects in the classroom, pure

CAL instruction is limited to what can be achieved with a two-dimensional screen. This suggests

that a blended learning approach, where CAL is combined with active teachers who focus their

engagement on tangible tasks may be a promising way to go.

4.2.2 Effect Heterogeneity by Baseline Ability, Grade Level and Class Size

We continue the heterogeneity analysis by discussing Figure 3, which plots kernel-weighted locally-

smoothed means of the endline test score at each percentile of the baseline test score by treatment

status. Figure 3a shows that endline tests scores in the control group for spillovers are slightly

higher than those in the pure control group at all percentiles of the baseline test score, but the

95% confidence bands mostly overlap. Comparing pure control classes to the teacher classes in

Figure 3b shows that the latter outperform the former at low percentiles of the baseline score,

while there is no difference at higher percentiles. Both CAL intervention groups, as illustrated in

Figures 3c and 3d, achieve considerably higher endline scores than pure control classes across all

percentiles in the baseline achievement, although the gap seems to narrow at higher percentiles in

the cal + teacher group.

In a next step, we examine the functional relation between treatment effects and baseline achieve-

ment more thoroughly. We further investigate whether the reported effects vary by grade level or
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(a) Spillover vs. pure control classes (b) teacher vs. pure control classes

(c) cal + supervisor vs. pure control classes (d) cal + teacher vs. pure control classes

Figure 3: Endline test scores by treatment status and baseline percentiles.
Note: The figures present kernel-weighted local mean smoothed plots relating endline test scores to percentiles in the
baseline achievement by treatment status alongside 95% confidence bands.

by class size. To do so, we estimate

Y EL
icsk = α+ βT1T1csk + βT2T2csk + βT3T3csk + βCXCXcsk

+θ1(T1csk × V aricsk) + θ2(T2csk × V aricsk)

+θ3(T3csk × V aricsk) + θCX(CXcsk × V aricsk)

+δY BL
icsk +X

′
icskγ + V

′
cskλ+ φk + ε2icsk

(2)

where (Tcsk × V aricsk) is the interaction of the treatment dummy with the variable of interest (i.e.

baseline math score, grade level and class size). Except for the four interaction terms, equation (2)

is identical to our benchmark estimation equation, i.e. equation (1).

In terms of baseline math ability, the regression analysis confirms our visual analysis of Figure 3.
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Table 5: Effect heterogeneity along baseline ability, grade level and class size.

Treatment indicators interacted with: Baseline Math Score Grade Level Class Size (log)
Dependent variable: Std. IRT-Score (1) (2) (3)

T1: Lessons with Teacher × Var. =0.105∗∗∗ =0.140∗∗∗ =0.437∗∗∗

(0.004) (0.000) (0.004)
T2: CAL-Lessons with Supervisor × Var. =0.014 =0.052 =0.109

(0.741) (0.250) (0.434)
T3: CAL-Lessons with Teacher × Var. =0.038 =0.058 =0.270∗

(0.284) (0.181) (0.052)
CX: Classes exposed to Externalities × Var. =0.004 =0.023 =0.118

(0.913) (0.675) (0.482)

Adjusted R2 0.70 0.70 0.70
Observations 3197 3197 3197
Treatment Indicators Yes Yes Yes
Baseline Score Yes Yes Yes
Individual & Classroom Controls Yes Yes Yes
Stratum & Grade Level FE Yes Yes Yes

Notes: All interaction variables are demeaned, so that the main effects of the treatment indicators remain unaltered.
p-values are based on class-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

Regarding the effect of additional math classes instructed by teachers, the effect size and baseline

achievement are indeed negatively correlated (see column 1 in Table 5). This suggests that teachers

were more effective in improving the performance of children with low math ability than those

children who performed well in the baseline assessment. The regression also yields negative signs

for the interaction between the baseline math score and T2 (i.e. cal + supervisor) as well as

T3 (i.e. cal + teacher), but the p-values do not reach the 10%-threshold. Hence, the benefit

of attending CAL-based lessons was independent of initial ability levels, while the effectiveness of

teachers without software was particularly low among well-performing students.

A similar pattern emerges when we study effect heterogeneity by grade level of the participating

students (see column 2 in Table 5). The effects of the CAL treatments do not significantly vary with

the grade level of students, but we find that additional math lessons taught by a teacher are less

effective in higher grades. This corroborates the finding that without the help of learning software,

teachers in Morazán seem to be least effective when explaining more complex concepts.
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Finally, we find that large class sizes reduce the effectiveness of teachers (see column 3 in

Table 5), no matter whether they use CAL software or not. This pattern does not emerge for CAL

classes overseen by supervisors, which seems plausible since supervisors were directed to refrain from

explaining math contents but solely provided technical assistance. Comparing the point estimates

of the interaction terms of the two treatments conducted by teachers, we find that the effect of

traditional classes (θ̂1=0.436, p-value=0.005) is more sensitive to class size than the effect of CAL-

lessons instructed by teachers (θ̂3=0.270, p-value=0.052). Overall, this confirms the notion that

computer-based learning can mitigate the problems related to large class sizes (e.g. Banerjee and

Duflo, 2011; Muralidharan, Singh and Ganimian, 2019).

4.3 Program Attendance and IV-Estimates

Our benchmark analysis focuses on ITT-estimates that do not account for the actual attendance rate

of students in the additional math lessons. In this section, we present data on the overall compli-

ance, examine the correlation between individual attendance and endline scores, and finally discuss

instrumental variable estimates for the impact of the three interventions assuming full attendance.

Figure 4 plots the distribution in attendance rates across all eligible students. With an average

attendance rate of 59%, participation of students was a weak spot of the program. Attendance rates

slightly varied across the three treatments, although the differences are statistically insignificant:

Additional CAL classes instructed by teachers achieved the highest participation (60%), followed by

additional classes instructed by teachers (59%) and CAL classes conducted by a supervisor (57%).

The individual attendance rate of students is strongly correlated with their performance in the

endline math assessment, as one would expect considering that the programs successfully increased

math learning outcomes.

Figure 5 plots the residual endline IRT-score (net of all control variables including baseline
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(a) T1: Additional math lessons with teachers (b) T2 & T3: Additional CAL-lessons

Figure 4: Attendance of students in additional math lessons.

scores) on the y-axis, and the attendance rates of the students on the x-axis. We aggregated the

individual data points into 15 bins in order to improve readability, and plot the correlation by

treatment type. Figure 5a covers the students that were assigned to additional math classes taught

by teachers, while Figure 5b illustrates the correlation between attendance and residual endline

scores for the two CAL interventions.9

We next appraise the question, how much children would have learned had they fully participated

in the additional math lessons they were offered. To do so, we estimate an IV-model, with the first-

stage estimation being specified as

AttT=t
icsk = α+ π1T1csk + π2T2csk + π3T3csk + δY BL

icsk +X
′
icskγ + V

′
cskλ+ φk + ε3icsk for t ∈ [1, 2, 3]

(3)

where AttT=t
icsk is student’s i attendance rate in treatment t and takes values between 0 and 1.

All other variables are defined as in the benchmark estimation equation, i.e. equation (1). In the

9Regressing endline IRT scores on attendance rates (continuous between 0 and 1), baseline scores, individual and

classroom controls yields the following correlations between attendance and performance: γ̂T1=0.40 (t-value=5.0);

γ̂T2=0.56 (t-value=4.2); γ̂T3=0.55 (t-value=3.6). Including a quadratic term we get: γ̂1
T1=−0.53 (t-value=−1.9),

γ̂2
T1=0.89 (t-value=3.1); γ̂1

T2=0.56 (t-value=1.1), γ̂2
T2=0.01 (t-value=0.0); γ̂1

T3=−0.41 (t-value=−1.0), γ̂2
T3=0.94

(t-value=2.1).
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(a) T1: Additional math lessons with teachers (b) T2 & T3: Additional CAL-lessons

Figure 5: Residual endline test scores and attendance in additional math lessons.
Note: The figures present the partial correlation between individual attendance rates and residual endline test scores
after controlling for baseline scores, individual and classroom characteristics. To ease readability, we aggregated
individual data points into 15 bins.

second stage, we replace the binary treatment indicators with the predicted attendance rates from

stage 1, i.e. Âtt
T=t

icsk , and estimate

Y EL
icsk = α+ β1Âtt

T=1

icsk + β2Âtt
T=2

icsk + β3Âtt
T=3

icsk + δY BL
icsk +X

′
icskγ + V

′
cskλ+ φk + ε4icsk. (4)

In order to interpret β̂1, β̂2, and β̂3 as the treatment effects of attending all 46 additional math

lessons, we have to impose two (restrictive) properties that go beyond the standard monotonicity

and independence assumptions (see Angrist and Pischke, 2008; Muralidharan, Singh and Ganimian,

2019). First, the treatment effect needs to be homogenous across students. Second, the functional

form between attendance and math score gains has to be linear.

Our data suggest that these two additional assumptions may be violated and that the IV-

estimates are potentially downward biased. Effect homogeneity seems questionable, since the im-

pacts of the interventions are homogenous (in case of both CAL treatments) or decreasing (in case

of the teacher treatment) in initial ability, even though attendance rates are positively corre-

lated with baseline scores. Attending an additional math lesson thus had a stronger effect on low

ability than high ability students. Hence, the IV-estimates might understate the true effect under
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Table 6: IV-Estimates: Program effects with full participation

Percent Correct Std. IRT-Scores

(1) (2) (3) (4)

T1: Lessons with Teacher 5.066∗∗∗ 4.739∗∗∗ 0.286∗∗∗ 0.269∗∗∗

(0.002) (0.004) (0.002) (0.005)
T2: CAL-lessons with Supervisor 7.104∗∗∗ 6.859∗∗∗ 0.390∗∗∗ 0.378∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-lessons with Teacher 7.517∗∗∗ 7.236∗∗∗ 0.411∗∗∗ 0.396∗∗∗

(0.000) (0.000) (0.000) (0.000)

Kleibergen-Paap F-statistic 214.45 193.47 213.78 192.89
Adjusted R2 0.65 0.66 0.69 0.69
Observations 2570 2570 2570 2570
Baseline Score Yes Yes Yes Yes
Individual & Classroom Controls No Yes No Yes
Stratum & Grade Level FE Yes Yes Yes Yes

Notes: p-values are based on class-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

full participation. Moreover, the functional form between attendance and ability gains appears to

be (slightly) convex rather than linear, suggesting that children experienced increasing returns to

attending the additional lessons. Again this would lead to a downward bias in the IV-estimates.

Table 6 presents the IV-estimates, which can be interpreted as the (potentially downward biased)

treatment effects of attending all 46 additional math lessons. Attending the full CAL program during

the intervention period leads to an increase in the endline score of about 7 percentage points or

0.38σ to 0.41σ, which is comparable in magnitude to effects of technology-aided instruction found

in India, where Muralidharan, Singh and Ganimian (2019) report average learning gains in math of

0.6 standard deviations for 90 days attendance at CAL learning centers.

An increase in math ability of 0.4σ is about equivalent to the average student’s progress in

1.1 school years. This translation of the average treatment effects under full compliance into school-

year equivalents should be read with caution, however: On the one hand, school year equivalents

do not only represent what children learn in their regular math classes at school but also reflect

age-based cognitive development, learning at home or spillovers from other subjects. On the other
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hand, our monitoring data suggest that about 25% of regular lessons are canceled due to teacher

absenteeism and that children miss another 10%. Hence, compliance in regular classes is far from

perfect, which complicates statements concerning the relative effectiveness of the additional CAL-

based lessons compared to regular math lessons based on these estimates.

5 Discussion

5.1 Treatment Externalities

Our research design allows us to quantify spillovers on non-treated classes in program schools.

As discussed in section 4.1, we find positive and significant externalities: Students assigned to

control classes in program schools scored about 0.14σ higher in the endline assessment than students

assigned to pure control classes. This effect is comparable in magnitude to the treatment effect for

additional math lessons instructed by teachers. While we do not have rigorous experimental evidence

to pin down the mechanisms with certainty, the data we collected from different sources allows for

a discussion of what may (or may not) explain these externalities. In the following we distinguish

between three broad explanations: (i) direct exposure of students in control classes, (ii) behavioral

adjustments to the experimental design, and (iii) social learning among peers.

Direct Exposure. We begin with examining the hypothesis that control students in program

schools may have been directly exposed to one of the treatments, either by (illicitly) participating

in the additional math lessons, by targeted migration and class changes, or by using CAL-software

in regular lessons or at home.

To prevent direct exposure of control students to the treatments, the implementing NGO in-

structed contract teachers and supervisors to confine access to children that were registered as

participants. Our monitoring data shows high compliance with this directive, as unauthorized
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participation was only recorded during 6 out of about 750 unannounced visits in treatment classes.

Likewise, we aimed to eliminate any incentives to change classes or schools and therefore barred

students that changed into treatment classes during the school year from attending the additional

math lessons. Only 38 students in our estimation sample changed classes or schools during the

program and excluding these students from the estimation models leaves the results unchanged.

Control students in program classes may also have been exposed to the learning software in

regular classes or at home. Again, our data suggests otherwise: The enumerators recorded computer

usage in only 5 out of about 1,000 regular class visits. Similarly, computer usage at home is

an unlikely candidate to account for treatment externalities: According to our socio-demographic

survey, only 576 students (about 18%) live in a household that owns a computer with internet access

and this asset class is not correlated with learning outcomes in the endline assessment.

Behavioral Adjustments to the Experimental Design. There are several ways in which

students or school staff might have inadvertently adjusted their behavior to the experiment (see

appendix A.4 for a more detailed discussion). First, the presence of the NGO could have incentivized

schools to make a good impression, for instance to be allowed to keep the IT equipment after the

intervention or to be considered for future collaborations. Our data does not support this claim,

however, as neither teacher nor student attendance is higher in program schools (see Table A.4)

and the number of installed computers is uncorrelated with student performance (see Table 7).

Second, the difference between control classes within and outside program schools may be driven

by John Henry effects, a bias induced from reactive behavior of the control group to overcome the

disadvantage of not being treated (e.g. Glennerster and Takavarasha, 2013). If such behavior arises

within program schools, but not in spatially separated pure control schools, it could account for

the observed externalities. This mechanism has similar implications, but is distinguishable from

those discussed in the previous paragraph. While the previous paragraph explores the possibility
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of a general boost in student or teacher motivation across all groups in treatment schools, the John

Henry effect would only operate for the control group. As shown in columns (3) and (6) of Table A.4,

the data reject this hypothesis.

Third, the experiment might have induced behavioral changes in response to being observed,

so called Hawthorne effects (e.g. Levitt and List, 2011). If being part of an experiment was more

salient to subjects in program schools, they might have worked harder as a response to being

observed, producing the pattern we find in our data. This seems unlikely for several reasons.

Most importantly, the monitoring process was structured homogeneously, meaning that enumerators

visited program and control schools with the same frequency and followed the same observational

procedure. Moreover, only few studies provide evidence for the presence of Hawthorne effects in

the context of educational interventions, even though the topic received considerable attention (e.g.

Adair, 1984; Adair, Sharpe and Huynh, 1989; Krueger, 1999).

Finally, divergent behavioral responses by treatment status might only have occurred during the

math assessment. A large body of literature shows that test-taking motivation can have profound

effects on low-stakes test results (e.g. Silm, Pedaste and Täht, 2020). Since the implementation

of our experiment did not hint at any personal or institutional rewards for participants, it seems

unlikely that the treatment status systematically influenced students’ test-taking effort. One may

further hypothesize that students in program schools put more effort into the tests because they

perceived it as more “purposeful” when other classes of the same grade also participated in the

examinations. We test this claim by interacting the control classes with a binary indicator equaling

one for classes in schools that have other classes of the same grade level that took the test (almost

exclusively satisfied in program schools), but do not find a significant correlation. Finally, even if

motivational effects were present, one would also expect them to have influenced performance during

the baseline assessment, which would cancel out any potential bias operating via this channel.
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Table 7: Externality channel: Proxies for social learning and in-kind incentives

Dependent variable: Std. IRT Score Treatment Intensity Installed NGO computers

CX-indicator interacted with: All Treatments CAL Per Student Total
(1) (2) (3) (4)

CX: Control Classes for Externalities 0.146∗∗ 0.135∗∗ 0.142∗∗ 0.146∗∗

(0.019) (0.023) (0.020) (0.037)
CX: Control Classes for Externalities × Var. 0.010 0.015∗∗∗ 0.031 0.001

(0.290) (0.001) (0.950) (0.865)

Adjusted R2 0.73 0.74 0.73 0.73
Observations 1279 1279 1279 1279
Individual & Classroom Controls Yes Yes Yes Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: Treatment intensity defined as share of treated students in a school. p-values are based on school-level clustered
standard errors and are shown in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Social Learning among Peers. The treatment externalities may also stem from peer effects,

as participants could have shared their knowledge with schoolmates from other classes. Results in

columns (1) and (2) of Table 7 suggest that this may have been the case: What explains part of

the performance differential between program school control classes and pure control classes is the

share of children that participated in the CAL treatments. One explanation is that the learning

gains produced by CAL were passed on by the participants to their peers from non-treated classes.

Another explanation for this pattern would be that hosting many CAL classes went along with a

more generous furnishing of computer-labs by the NGO, which might have incentivized school staff

to make a good impression with the NGO so that they could keep the equipment even after the

NGO-run program expired. As discussed above, columns (3) and (4) in Table 7 show no relevant

correlation between the number of NGO computers installed in a school and the endline performance

of students. Hence, the interpretation that CAL beneficiaries passed on their learning gains to their

peers seems more plausible than behavioral adjustments in prospect of being donated equipment.

This finding is consistent with a literature of peer-effects that documents how the performance of

each student affects achievements of her classmates (see Sacerdote, 2011).
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Summarizing Remarks. Although we cannot comprehensively pin down the channels through

which the observed externalities operate, social learning among peers is the mechanism that can

be reconciled best with the data at hand. In contrast, we are confident to rule out direct exposure

of control units to the evaluated treatments, as our data documents excellent compliance with the

experimental protocol. Behavioral adjustments to the experimental design may unfold in many

ways, which makes it difficult to track them exhaustively. We tested several potential channels of

this category, but the data consistently rejects the underlying hypotheses.10

5.2 Cost-Effectiveness

Since all three interventions were assessed within the same context and framework, we can directly

compare their cost-effectiveness. The bulk of expenditures comes from salaries to teachers and

supervisors (65% for teacher, 41% for cal + supervisor, and 51% for cal + teacher).

The two computer treatments additionally entail costs for acquiring the IT equipment, shipping

10The discussed channels imply three competing interpretations of our results: First, the program may have

unfolded treatment externalities in the narrower sense due to social learning among peers. This is supported by our

data as we indeed find a correlation between the number of students attending CAL lessons and the performance

of their peers in control classes. Second, the observed pattern may not result from actual spillovers, but from a

biased estimate for the program school control classes caused by John Henry effects. John Henry effects may operate

via test effort on the assessment day (not testable with our data) or throughout the implementation phase (no

supporting evidence in our data), but – in either case – they would not affect the interpretation of the three treatment

estimates. A third possibility is that the pure control classes do not constitute a sound counterfactual because students

from program and control schools differed systematically in their test taking effort. In this the case, the performance

differential between the two control groups would have to be subtracted from the impact estimates for each treatment,

roughly halving the impact the two CAL treatments (T2: p-values=0.10-0.13; T3: p-values=0.04-0.06) and virtually

eliminating the impact of the teacher treatment (T1: p-values=0.73-0.79). While we do not find any supporting

evidence for this claim, we do not possess the data to rule it out with certainty. Since such behavior might occur in a

large number of educational field experiments, incorporating measures of test taking effort in future experiments may

yield important insights about this potential methodological artifact.
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it to El Salvador and maintaining it. Since our partner NGO acquired most computers as in-kind

donations, the factual IT-related costs incurred by the NGO (about 18 USD per computer) provide

a poor guidance for educational policy-makers aiming to implement CAL interventions at scale. To

make the cost-effectiveness calculations more insightful for a generic setting, we assume costs of

200 USD per work station and an average of five years of usage time.

Based on these assumptions for the costs of the computer hardware, the cost accounting of

our partner NGO, and the guidelines developed by Dhaliwal et al. (2014), we estimate the cost

per child to be 44 USD for teacher, 43 USD for cal + supervisor, and 56 USD for cal +

teacher. Assuming a linear dose-response-relationship, teacher can thus be expected to yield

a 0.35σ increase in test scores per 100 USD, while investing the same amount of money in CAL

lessons would produce 0.49σ and 0.43σ, respectively. This implies that even when the computers

have to be acquired at a considerable price, the two CAL interventions outperform additional

teacher-led classes in terms of cost-effectiveness. Moreover, hiring lower-paid supervisors rather

than officially certified teachers to conduct the CAL classes might be slightly more cost-effective, as

supervisor were paid only about 60% of a teacher’s wage. These conclusions should be interpreted

with caution: Not only is precision impaired by the statistical uncertainty of our estimates, but the

relative cost-effectiveness also depends on contextual factors such as local wages.

5.3 The Role of Teacher Ability

Multifaceted evidence derived in our analysis points to a relatively low productivity of teachers.

First, the difference in learning gains between program school control classes and classes receiv-

ing additional teacher-centered math lessons is close to zero and statistically insignificant (p-values

around 0.7). Similarly, teachers do not seem to add much to the effect of computer-assisted learn-

ing lessons: The estimated impact for CAL lessons instructed by teachers is only marginally and
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Figure 6: Math proficiency among regular teachers and teachers hired for additional math lessons.
Note: The graph shows the share of correct answers on questions covering the official math curriculum of grades 2 &
3, grade 4, grade 5, and grade 6. This data was collected after the endline assessment for students in late 2018 and
early 2019. The sample includes all program teachers as well as a representative sample of regular primary school
teachers teaching math in grades 3 to 6 in the department of Morazán. Source: Brunetti et al. (2020).

insignificantly higher than that of CAL lessons conducted by supervisors (p-values around 0.6). Sec-

ond, the heterogeneity analysis shows that the productivity of teachers declines as the complexity of

concepts increases: The impact of the additional math lessons instructed by a teacher is decreasing

in both the grade level as well as the baseline achievement of their students. Third, both CAL

interventions outperform the additional math lessons instructed by teachers: The point estimates

of the CAL interventions are consistently larger, and their impact neither decreases with student

baseline performance nor grade level. Hence, it appears that in our setting, learning software is more

productive in teaching basic math than officially certified teachers, especially as the complexity of

the content increases.

In order to analyze the root cause of the low productivity of teachers, we asked the instructors

hired by the NGO to participate in a 90 minutes math assessment covering the primary school

curriculum of grades 2 to grade 6. Moreover, we administered the same assessment to a repre-

sentative sample of regular math teachers of grade 3 to grade 6 classes allowing us to learn how
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the contract teachers compare to the regular teaching staff (see Brunetti et al., 2020, for further

details). Figure 6 illustrates the main insights from this assessment: Primary school math teachers

in the department of Morazán do not master large parts of the content they are supposed to teach.

The contract teachers hired by the NGO answered on average only 75% of the second and third

grade questions correctly and this share declines to 54% for the sixth grade questions. Hence, even

for the simplest questions, the average contract teacher does not meet the minimum proficiency of

80% correct answers as advocated by the World Bank (see Bold et al., 2017a; World Bank, 2018).

These insights raise the question whether the teachers hired for the intervention have a particu-

larly low proficiency in math – which could explain why they are not part of the publicly employed

teaching staff. Figure 6 suggests otherwise: Regular teachers performed considerably worse than

the contract teachers, as they achieved on average only 56% correct answers on second and third

grade questions and 30% on items pertaining to the sixth grade curriculum.11

Inadequate content knowledge of teachers likely puts a binding constraint on their productivity.

To test this claim we conduct two additional analysis using the data on the math ability of contracted

instructors as well as regular math teachers:12 First, we re-estimate equation (2) and interact

the three treatment dummies with the instructors’ standardized math ability score. The math

content knowledge of teachers is correlated with student learning gains in both traditional (θ̂1=0.08,

11Note that the implementing NGO administered a very short math assessment in the hiring process in order to

eliminate the least qualified candidates. Moreover, the hired teachers participated in several workshop to prepare

them for the teaching assignment. Since the assessment reported in Figure 6 was conducted after the intervention

finished, it is likely that the NGO’s selection process and the additional training for the contract teachers partly

explains the pronounced differences in content knowledge between the regular teachers and the contract teachers.

12This additional analysis comes with some caveats: The experimental protocol did not take teacher ability into

consideration, which is why teachers were assessed in the aftermath of the field experiment. Moreover, the number of

different instructors was not optimized with respect to statistical power. The implementing NGO hired 23 teachers and

15 instructors to conduct the additional math lessons; all contract teachers instructed both traditional lessons (T1)

and CAL-based courses (T3) so that an average contract teacher was responsible for two class per treatment arm.

39



p-value=0.28) and CAL-based math lessons (θ̂3=0.09, p-value=0.14), whereas the math score of

supervisors is virtually orthogonal to learning gains (θ̂2 <0.01, p-value=0.94). Since supervisors did

not provide math related explanations, it makes sense that their math ability does not moderate

the impact of CAL-based lessons. Second, we correlate the standardized math ability of regular

teachers with the learning gains of their students between the baseline and the endline assessment.

Depending on the model specification, the point estimates vary between 0.09 and 0.12 and are

significant at the 0.05 level or higher (see Table 4 in Brunetti et al., 2020). Although these are

purely observational estimates, they are not only very similar to the point estimates obtained for

the impact of teacher ability in the program classes reported above, but also to quasi-experimental

evidence established in studies from various countries: The benchmark estimates for the annual

impact of one standard deviation in additional teacher content knowledge on standardized learning

outcomes of children are 0.09 for math in Peruvian primary schools (Metzler and Woessmann,

2012), 0.09 for math in Pakistani primary schools (Bau and Das, 2020), and 0.07 for math and

language in Eastern African primary schools (Bold et al., 2019). Overall, these consistently positive

point estimates for teacher content knowledge corroborate the hypothesis that the contract teachers’

poor subject mastery impaired the impact of the evaluated teacher-centered math lessons. Hence,

inadequate content knowledge is a plausible factor that helps to explain the low productivity of

teachers reported in this study.

In view of drawing general conclusion for the effectiveness of additional math lessons instructed

by regular teachers, the results reported in Figure 6 are particularly grim. The relatively low impacts

found for the additional math lessons instructed by contract teachers may be too optimistic when

aiming for a scale-up with regular teachers, who have on average a lower math proficiency than

the contract teachers hired by the implementing NGO. According to our most reliable estimates, it

would take a teacher with 88% correct answers on the administered assessment to teach additional
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math classes so that the attending students improve on average as much as students attending

CAL lessons overseen by a supervisor. This score corresponds to the 75th math ability percentile

among the hired contract teachers and the 91st math ability percentile among regular primary

school teachers in Morazán.13

These results highlight how learning software can compensate for the poor content knowledge

of teaching staff. Earlier contributions on the value of computer-assisted learning emphasized its

advantages in terms of mitigating issues of large class sizes and the challenges of “teaching at the

right level” (e.g. Banerjee and Duflo, 2011; Muralidharan, Singh and Ganimian, 2019). While our

heterogeneity analysis corroborates this line of reasoning, this section showed that CAL can help

to remedy shortcomings related to low teacher ability.

6 Conclusion

Computer-assisted learning (CAL) is widely perceived as a promising approach to address the low

quality of teaching in developing countries. While encouraging, previous research is inconclusive re-

garding the value of technology-based instruction relative to traditional teaching and and has little

to say on the complementarities between teachers and learning software. The evidence presented

in this paper suggests that CAL can not only produce substantial learning gains, but may also

outperform traditional instruction. In our setting, this relative advantage seems to be driven by

a mismatch between teacher qualification and the complexity of the concepts they have to teach:

Under traditional teaching models, children are unlikely to learn what their teachers fail to under-

stand, while CAL allows them to make progress beyond their teachers’ content knowledge. Overall,

13For this back-of-the-envelope calculation, we use 0.063σ for the impact difference between teacher-based additional

lessons and CAL lessons monitored by supervisors (see Table 2), 0.09 for the conversion factor of standardized teacher

content knowledge on standardized student ability, and data on content knowledge of teachers presented in Figure 6.
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our findings point to an alarmingly low productivity of teachers. Not only is the effect of additional

teacher-led instruction comparatively low (and might be partly if not completely attributable to

treatment externalities), but poorly qualified teachers also do little to improve the productivity of

CAL lessons. In light of the fact that they do not master a substantial share of the contents they

are required to teach, these results are hardly surprising.

Promoting the targeted use of computers may therefore be an attractive option for governments

and NGOs operating in settings with low teacher quality. When teachers are struggling with the

concepts they have to teach, learning software can be an important remedy allowing them to improve

the quality of their teaching. Another approach would be to invest in the skills of teachers, for

instance by offering professional development programs: Teachers may not make much of a difference

when they do not master what their students are supposed to learn, but vast empirical evidence

from developed countries suggests that they can matter a great deal when they are well prepared

and adequately qualified (Rockoff, 2004; Chetty, Friedman and Rockoff, 2014). Hence, gaining a

better understanding of how teachers’ preparedness, and particularly their content knowledge, can

be improved is likely to yield large social returns. Since hardly any rigorous evidence on this aspect

is available (Muralidharan, 2017; Bold et al., 2017a), we teamed up with the same implementing

partner to examine whether computer-assisted learning software can help to advance the content

knowledge of teachers and therewith their productivity in the classroom (see Brunetti et al., 2019).

42



References

Adair, John. 1984. “The Hawthorne Effect: A Reconsideration of the Methodological Artifact.”
Journal of Applied Psychology 69(2):334–345.

Adair, John, Donald Sharpe and Cam-Loi Huynh. 1989. “Hawthorne Control Procedures in Edu-
cational Experiments: A Reconsideration of Their Use and Effectiveness.” Review of Educational
Research 59(2):215–228.

Angrist, Joshua and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics. An Empiricist’s
Companion. Princeton: Princeton University Press.

Attanasio, Orazio, Camila Fernández, Emla Fitzsimons, Sally Grantham-McGregor, Costas Meghir
and Marta Rubio-Codina. 2014. “Using the Infrastructure of a Conditional Cash Transfer Pro-
gram to Deliver a Scalable Integrated Early Child Development Program in Colombia: Cluster
Randomized Controlled Trial.” BMJ 349:1–12.

Baird, Sarah, Aislinn Bohren, Craig McIntosh and Berk Özler. 2015. “Designing Experiments to
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A Appendix: Additional Analyses

A.1 Learning Gap and Grade Level Heterogeneity in our Sample

In order to examine the learning gap and grade level heterogeneity in our sample of primary school
pupils, we follow the approach by Muralidharan, Singh and Ganimian (2019) and convert the pupils’
performance in the baseline assessment into a proficiency measure expressed in grade levels. As point
of origin, we calculate for each participant her share of correct answers by item grade level. The
score that a child obtains in our discrete proficiency measure is determined by those grade specific
set of items, where the child scores at least 50% correct answers. To be assigned to a certain grade
level, a participant needs to reach the 50%-threshold that corresponds with said grade level and all
preceding grades. For example, a fourth grader that scored 80% on first grade items, 55% on second
grade items and 40% on third grade items would be assigned to a second grade proficiency level.
Participants answering less than 50% of first grade items correctly, are assigned to grade level<1.

Based on the previously specified measure, which is plotted in Figure 1b, we obtain a performance
gap of two grades between the best and worst student in the median class of our sample. By
construction the mean in the within-class performance range is lowest in third grade classes (about
1.3, i.e. the math abilities of students’ within the same class cover on average 2.3 grades) and
highest in sixth grade classes (about 2.4). A simple regression analysis also confirms that within-
class variation is substantial, as classroom fixed effects only account for about 25% of the total
variation at a certain grade level.

A.2 Attrition

In Table A.1 we examine whether the attrition at endline is correlated with the treatment status.
To do so, we present results based on Linear Probability Models in columns (1) to (3), and on Logit
Models in columns (4) to (6). The results unequivocal suggest, that the probability to miss the
endline test did not depend on the treatment status.

Table A.1: Differences in attrition across treatments

Dependent var.: Attrition at endline OLS Logit

(1) (2) (3) (4) (5) (6)

T1: Lessons with Teacher 0.018 0.017 0.224 0.224
(0.302) (0.318) (0.298) (0.293)

T2: CAL-Lessons with Supervisor 0.021 0.026 0.263 0.330
(0.203) (0.115) (0.202) (0.116)

T3: CAL-Lessons with Teacher 0.023 0.025 0.280 0.315
(0.226) (0.190) (0.215) (0.173)

CX: Control Classes for Externalities 0.019 0.022 0.236 0.282
(0.307) (0.237) (0.298) (0.228)

Baseline math score =0.002∗∗∗ =0.002∗∗∗ =0.024∗∗∗ =0.024∗∗∗

(0.000) (0.000) (0.000) (0.000)

Adjusted R2 0.00 0.01 0.01 - - -
Pseudo R2 - - - 0.00 0.02 0.02
Observations 3528 3528 3528 3528 3528 3528

Notes: p-values (in parentheses) are based on class-level clustered standard errors. * p<0.10, ** p<0.05, *** p<0.01.
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A.3 Method of Inference and Robustness of our Results

As explained in section 4.1, we apply two methods of inference. When we assess the impact of the
different treatments relative to the children in pure control classes, the reported p-values are based
on class-level clustered standard errors. Inference on within program school comparisons between
the different treatments (including control classes subject to externalities), however, are based on
a randomization inference test statistic with 2,000 random draws subject to the identical cut-off
criterion as used in our re-randomization scheme.

This mixed estimation approach directly follows from our two-step randomization design (see
Figure 2). Randomization inference is indispensable when comparing experimental groups within
program schools since the underlying assignment process involved re-randomization. Conversely,
selection of program schools and pure control schools was not based on re-randomization, making
the use of randomization inference less critical.

Figure A.1: Full re-randomization (incl. steps 1, 2a, and 2b) and the
share of classes without data points (N=2000 draws).
Notes: This graph plots the distribution of the share of missing data points, when
we conduct randomization inference by reiterating both stages of our randomiza-
tion procedure. The large number of missing data points weakens the precision of
our estimates, which explains why the p-values in the upper panel of Table A.2
increase by a factor of 5 to 10 compared to the p-values in Table 2.

While randomization inference is also preferable for assignment processes based on plain (or
stratified) randomization (e.g. Young, 2019), its application is problematic in our case due to a
particular feature of our study design: Out of the 162 eligible classes in pure control schools, we
only collected data for a random sample of 40 classes. Implementing randomization inference for
both stages of the randomization process thus comes with the downside that each draw will contain
a considerable number of classes that did not participate in the assessments. As illustrated in Figure
A.1, re-iterating the full randomization procedure yields an average of 37% of classes without data
per draw. Even though missing data points in the replication procedure create an artificial loss of
statistical power, we present the respective estimates as a conservative reference point.
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Table A.2: ITT-Estimates on the effects of the different interventions on children’s math scores
with p-values based on clustered standard errors

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teachers 2.904∗∗∗ 2.643∗∗ 0.165∗∗∗ 0.152∗∗

(0.005) (0.012) (0.006) (0.013)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗∗ 0.226∗∗∗ 0.214∗∗∗

(0.000) (0.000) (0.000) (0.000)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗∗

(0.000) (0.000) (0.000) (0.000)
CX: Control Classes for Externalities 2.595∗∗ 2.407∗∗ 0.147∗∗ 0.137∗∗

(0.011) (0.017) (0.013) (0.020)

βT4 := βT2 − βT1 = 0 1.191 1.226 0.061 0.063

p-value (βT4=0) (0.203) (0.180) (0.267) (0.241)

βT5 := βT3 − βT1 = 0 1.650∗ 1.686∗ 0.084 0.086∗

p-value (βT5=0) (0.080) (0.063) (0.115) (0.093)

βT6 := βT3 − βT2 = 0 0.459 0.460 0.024 0.023

p-value (βT6=0) (0.606) (0.599) (0.637) (0.636)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: p-values based on traditional clustered standard errors in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

To assess the robustness of our results with respect to the method of inference, we report three
versions of our benchmark analysis: In Table 2, the upper panel p-values are based on class-level
clustered standard errors, while we run randomization tests in the lower panel. Table A.2 replicates
these results, but inference is consistently based on class-level clustered standard errors. Finally,
Table A.3 presents the main results with p-values based on a full randomization tests.

Reassuringly, our main conclusion do not depend on the method of inference. When we apply
traditional inference to the lower panel, as in Table A.3, changes in p-values are very small and do
not show a clear pattern. And despite losing a lot of power when applying randomization inference
to the upper panel, as in Table A.2, the only notable difference is, that the program externalities
captured by βCX turn insignificant with p-values around 0.13.
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Table A.3: ITT-Estimates on the effects of the different interventions on children’s math scores
with p-values based on randomization inference

Percent Correct IRT-Scores

(1) (2) (5) (6)

T1: Lessons with Teacher 2.904∗ 2.643∗ 0.165∗ 0.152∗

(0.073) (0.089) (0.083) (0.097)
T2: CAL-Lessons with Supervisor 4.095∗∗∗ 3.869∗∗ 0.226∗∗ 0.214∗∗

(0.009) (0.013) (0.015) (0.018)
T3: CAL-Lessons with Teacher 4.554∗∗∗ 4.328∗∗∗ 0.250∗∗∗ 0.238∗∗

(0.006) (0.006) (0.007) (0.011)
CX: Control Classes for Externalities 2.595 2.407 0.147 0.137

(0.117) (0.136) (0.120) (0.140)

Adjusted R2 0.66 0.67 0.69 0.70
Observations 3197 3197 3197 3197
Individual & Classroom Controls No Yes No Yes
Baseline Score Yes Yes Yes Yes
Stratum & Grade FE Yes Yes Yes Yes

Notes: p-values based on a two-sided randomization inference test statistic that the placebo coefficients are larger
than the actual are shown in parentheses. The p-values were computed based on 2000 random draws.
* p<0.10, ** p<0.05, *** p<0.01.

A.4 A Detailed Account on Behavioral Adjustments to the Experimental Design

This section presents more exhaustive considerations regarding behavioral adjustments to the ex-
perimental design than the main text. It follows the same structure, but discusses our four sets
of explanations more extensively: (i) unintended incentives to improve performance at the school
level, (ii) John Henry effects, (iii) Hawthorne effects, and (iv) systematic variation in test effort.

The presence of the NGO might have induced a general motivational boost in participating
schools. This is, school staff might have been incentivized to make a good impression to be allowed
to keep the IT equipment or to remain part of the project after the completion of its trial phase.
We first examine this reasoning by using class cancellation rates and attendance rates as proxies for
the effort by school staff/teachers, and then continue by testing whether a more generous supply
of computer hardware raised performance in control classes; the absolute and relative number of
supplied computers varied across program schools due to heterogeneity in both class sizes as well
the number of classes assigned to CAL-treatments. Contrary to expectations, cancellation rates
appear to be slightly higher in program schools than in control schools although the difference
is not statistically significant (see columns 4 & 5 in Table A.4).14 Similarly, student attendance
rates do not point towards intensified efforts in program schools, as the estimated differences in
columns (1) and (2) of Table A.4 yield p-values larger than 0.8. Finally, we test whether a more

14The project could also have affected class cancellation rates directly, e.g. via space limitations induced through
the additional lessons at the expense of regular classes. Furthermore, differences in cancellation rates may be an
artifact of the data collection process. To keep expenses low, we randomly selected entire schools rather than classes
to be visited on a given day. Thus, enumerators had to record data from all classes on grades 3–6 in program schools,
but only up to two classes during control school visits. One could hypothesize that, in control schools, data collectors
were more inclined to wait for the teacher to turn up, while, in program schools, they moved on to the next class.
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Table A.4: Externality channel: Motivation proxied with class attendance and cancellations.

Dependent variable: Student Attendance (%) Class Cancellations (%)

(1) (2) (3) (4) (5) (6)

Program Schools =0.304 =0.287 =0.978 6.879 6.537 8.215
(0.891) (0.896) (0.648) (0.238) (0.264) (0.140)

Adjusted R2 0.07 0.06 0.00 0.08 0.08 0.07
Observations 198 198 80 198 198 80
Control Classes Only No No Yes No No Yes
Classroom Controls No Yes Yes No Yes Yes
Stratum & Grade FE Yes Yes Yes Yes Yes Yes

Notes: p-values are based on school-level clustered standard errors and are shown in parentheses.
* p<0.10, ** p<0.05, *** p<0.01.

generous furnishing of computer-labs by the NGO has pushed schools to better performances that is
not necessarily reflected in attendance and cancellation rates. Consistent with the previous results,
columns (3) and (4) in Table 7 show no relevant correlation between the number of NGO computers
installed in a school and the endline performance of students in control classes.

The difference between control classes within and outside program schools may also be driven by
so-called John Henry effects. These refer to biases stemming from reactive behavior of the control
group. In our experiment, students in the control group may have worked harder to overcome their
disadvantage of not receiving the additional math lessons. Similarly, teachers could have redirected
resources and effort towards control classes to compensate them for their relative deprivation. For
example, teachers may have given more weight to math relative to other subjects when attending
control classes. One could hypothesize that such behavior only arises within (but not across) schools,
as students from the same school are more likely to be a relevant reference group. Limiting our
analysis to the control group, we can, once again, compare student and teacher motivation between
different experimental groups. As shown in columns (3) and (6) of Table A.4, limiting the analysis
to the control classes does not alter our conclusions: The difference in class cancellation rates
between program school control classes and pure control classes is small and remains aloof from any
conventional level of statistical significance. The same is true for students’ attendance rates.

Another factor potentially driving the difference between control classes within and outside
program schools might be behavioral changes in response to being observed. Such Hawthorne effects
would explain the measured difference in performance across the two control groups, if control units
in program schools responded more strongly to the fact that they were part of an experiment
than children and teachers in pure control schools. This seems unlikely for four reasons: First,
the experiment was explained to parents and teachers before schools and classes were randomized
into treatment and control groups, so that all subjects shared the same awareness about the field
experiment when its implementation started. Second, control students received a similar degree
of attention by the experimenters, no matter whether they attended program or control schools;
in the monitoring process, enumerators visited both set of schools with the same frequency and
followed the same procedure. Even though enumerators collected data from a larger number of
classes within program schools, the time they spent with each school’s headmaster and within a
given classroom did not vary systematically by the schools’ program status. Third, the results on
student and teacher attendance rates in Table A.4 do not support the hypothesis that subjects in
program schools had a stronger tendency to please experimenters, or what Levitt and List (2011)
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describe as “experimenter demand effects”. Finally, very few of a considerable number of studies
confirm the presence of Hawthorne effects in the context of educational interventions (e.g. Adair,
1984; Adair, Sharpe and Huynh, 1989; Krueger, 1999).15

A possibly remaining methodological artifact might be systematic differences in the participants’
test-taking motivation. A large body of literature, recently reviewed in Silm, Pedaste and Täht
(2020) and Rios (2020), shows that test-taking motivation can have profound effects on low-stakes
test results. Hence, if motivation of test-takers varied between control and program schools, this
may (partly) explain the measured differences in learning gains between the two control groups.

The psychometric literature coarsely distinguishes between the following criteria that impact
test-taking motivation: (i) stakes involved in test performance (e.g. grades or hard incentives),
(ii) behavior of proctors, (iii) design of the test (e.g. difficulty of items), and (iv) the purposefulness
of test (e.g. motivational instructions). We can rule out three of the four factors as potential
performance wedges between the two control groups: The stakes were uniformly low, the test
design only varied by grade level but not treatment status, and all proctors not only followed
the same instructions but also supervised test-taking across multiple schools regardless of their
treatment status. What potentially remains are vague differences in (iv) the purposefulness of the
test, where one can distinguish between “personal” (usually more important) and “institutional”
(typically less relevant) conditions. Regarding “personal” conditions, students in program schools
might have perceived competition as fiercer, since only in large program schools multiple classes
of the same grade participated in the assessment. We test this claim by interacting the control
classes for externalities with a binary indicator equaling one for classes in schools that have other
classes of the same grade level that took the test, but do not find a significant correlation (p-
value=0.73, results not shown).16 In a similar vein, John Henry effects may have only kicked in
on the test day, so that control students in program schools made an extra effort to balance out
their disadvantage of fewer math lessons; unfortunately, this is a hypothesis we cannot test. Under
“institutional” conditions, we subsume motivational instructions by school staff who potentially
encouraged children more strongly, if they thought such (last-minute) briefings help to cast a good
light on their school. We did not observe such behavior, however, and it is questionable whether
such briefings could sufficiently shift student motivation. Levitt et al. (2016) show that personal
rewards delivered immediately after assessments significantly impact student effort, while personal
rewards delivered with a delay of one month did not change performance. The implementation of
our experiment did neither hint at personal nor immediate rewards for participants. Hence, it is
unlikely that institutional conditions systematically influenced students’ test-taking effort.

15Adair (1984) reviews 13 educational studies (7 on children and 6 on college students), of which only four studies,
all of them analyzing the behavior of college students, produce evidence for Hawthorne effects. Adair, Sharpe and
Huynh (1989) expand the meta-analysis to 86 studies on educational interventions. They classify less than 10% of the
reviewed studies as a “Hawthorne case” and obtain an average Hawthorne effect across all studies of 0.01 (confidence
interval: −0.07 and +0.08). In an experimental study on the role of class size, Krueger (1999) demonstrates a negative
impact of larger classes on learning progress, while finding no indication for a potential Hawthorne effect on teachers
or students. Somewhat tellingly, Levitt and List (2011) conclude from a re-examination of the original data collected
at the Hawthorne plants in the 1930s, that “the most important lesson to be learned from the original Hawthorne
experiments is the power of a good story. The mythology surrounding the Hawthorne experiments arose largely absent
careful data analysis, and has persisted for decades even in the face of strong evidence against it [...].”

16This basically replicates the analysis of Table 7 using the binary indicator for multiple classes of the same grade
level as interaction variable. We also re-estimate equation (2) using this proxy for perceived in-school competition
but consistently reject the underlying hypothesis.
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B Appendix: Measuring and Converting Learning Outcomes

To measure math skills of third to sixth graders, we conducted two standardized math assessments
during the school year 2018. Both assessments include 60 items and were designed as follows:

1. We summarized the Salvadoran math curriculum for grades 1–6 along the three topics (a.) num-
ber sense & arithmetic, (b.) geometry & measurement, and (c.) data & probability.

2. We then mapped test items from various sources on the Salvadoran curriculum. These sources
are (a.) official text books of El Salvador, (b.) publicly available items from the STAR17 eval-
uations in California, (c.) publicly available items from the VERA18 evaluations in Germany,
and (d.) exercises from the Swiss textbook MATHWELT.

3. We then gathered pilot data on 180 test items answered by 600 Salvadoran pupils in October
2017 and estimated the difficulty and discrimination parameters of test questions based on
Item Response Theory (e.g. de Ayala, 2009).
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Figure B.1: Stylized illustration of the assessment design.
Note: Each part covers 30 items, adding up to 60 items per wave.

4. Finally, we designed paper and pencil maths tests using insights from step 3. The 60 items are
selected such that they reflect the weighting in the official curriculum: 60–65% number sense
& arithmetic, 30% geometry & measurement, 5–10% data & probability. Most items required
a written answer, while the share of multiple choice questions varied between 10% and 15%
depending on grade level. Figure B.1 illustrates how the math assessments at baseline and
endline were structured and linked. Both assessments had two parts, with the first part being
answered by all children independent of their grade. Moreover, the grade specific second part
of 3rd/4th/5th graders in the endline assessment included many baseline questions of the
4th/5th/6th graders. This linking across grades and waves was essential to infer a commonly
scaled ability score, i.e. the IRT scores.

17Further information on the Standardized Testing and Reporting (STAR) programme in California is available
online: www.cde.ca.gov/re/pr/star.asp (last accessed: 14.01.2018).

18VERA is coordinated by the Institut für Qualitätsentwicklung im Bildungswesen (IQB), see www.iqb.hu-berlin.
de/vera (last accessed: 14.01.2018).
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Diagnostics. Table B.1 shows summary statistics on test items for each grade and wave of the
assessment. In Table B.2 and Figure B.2, similar statistics are displayed for students’ percentage
scores. As can be seen, our test is not subject to relevant floor or ceiling effects: Hardly any students
could not answer a single question on a given assessment and not a single student scored all items
correctly. Similarly, only one item was not solved by anyone and no question could be answered
by all students. On average, students gave correct answers to about 25-43% of the questions in a
test booklet (column 2 in Tables B.1 and B.2). Figure B.3a shows the corresponding IRT-based
test information function for the entire assessment, i.e. for all grades and waves combined (see
below for details on IRT). As can be seen, our test is very informative for students across all ability
levels. However, the assessment is skewed towards high difficulty levels, meaning that it allows to
differentiate very precisely among high-achieving, but less precisely among low-achieving students.
Ideally, the precision (or “information”) of an assessment is highest around Theta = 0 where most
students are located (see Figure B.3b). This implies that, on average, students should be able to
answer about 50% of the test items. This reflects our decision to construct the assessment based on
the official Salvadoran curriculum in spite of the mismatch between the curriculum and students’
actual ability levels. Consequently, most of the included items could be answered by less than half
of the students. While this curriculum-based approach allows for a more meaningful interpretation,
it leads to a loss in terms of test information. Nevertheless, sufficient questions of differing difficulty
levels are covered so that our item battery provides a reliable measurement instrument.

(a) Baseline test (b) Endline test

Figure B.2: Distribution of percentage scores across students

Calculating IRT-Scores. Our math assessments allows us to project all outcomes on a common
ability scale by using Item Response Theory. Instead of summing up the correct answers to a total
score taken to represent a person’s ability, Item Response Theory proposes a probabilistic estimation
procedure. Ability is then viewed as a latent variable influencing the responses of each individual to
each item through a probabilistic process: The higher a person’s ability and the lower the difficulty
of a particular test item, the higher the probability of a correct answer. In the simplest form of the
model, the probability that individual i succeeds on item j can be expressed as

Pr(successij |bj , θi) =
exp{a(θi − bj)}

1 + exp{a(θi − bj)}
with θi denoting the ability of student i, and bj representing the difficulty of item j.
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Table B.1: Item diagnostic: The distribution of correct answers across items

Share of correct answers across items (in %)
a. Baseline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.4 24.9 18.3 87.3 0.0 0.0
4th Graders 2.4 30.9 25.5 94.2 0.0 0.0
5th Graders 0.4 34.9 26.6 96.6 0.0 0.0
6th Graders 0.4 38.7 27.4 96.4 0.0 0.0

b. Endline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.9 34.1 23.5 95.8 0.0 0.0
4th Graders 0.5 36.0 31.0 98.0 0.0 0.0
5th Graders 0.0 38.9 32.3 98.8 1.7 0.0
6th Graders 1.3 42.6 37.2 98.9 0.0 0.0

Notes: The share of correct answers bases on those students that participated in both assessments, and hence constitute
the main estimation sample. a. Share 0%: This column displays the share of items with zero correct answers. b. Share
100%: This column displays the share of items that were answered correctly by all test-takers.

Table B.2: Item diagnostic: The distribution of percentage scores across students

Percentage score across students (in %)
a. Baseline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.0 24.9 21.7 78.3 0.9 0.0
4th Graders 0.0 30.9 28.3 83.3 0.6 0.0
5th Graders 0.0 34.9 35.0 80.0 0.2 0.0
6th Graders 1.7 38.7 38.3 80.0 0.0 0.0

b. Endline Minimum Mean Median Maximum Share 0%a Share 100%b

3rd Graders 0.0 34.1 33.3 83.3 0.8 0.0
4th Graders 0.0 36.0 35.0 91.7 0.2 0.0
5th Graders 0.0 38.9 38.3 81.7 0.1 0.0
6th Graders 0.0 42.6 40.0 90.0 0.1 0.0

Notes: The distribution of percentage scores bases on those students that participated in both assessments, and hence
constitute the main estimation sample. a. Share 0%: This column displays the share of students that answered zero
questions correctly. b. Share 100%: This column displays the share of students that answered all questions correctly.
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(a) IRT-based test information function (b) Distribution of student abilities (Theta)

Figure B.3: Test information figure and distribution of students’ abilities.

In this so-called one-parameter model, the probability that an individual correctly solves a
particular item is thus a logistic function of the distance between the ability level of that individual
and the difficulty of the item. Ability levels for each person and difficulties for all items can be
computed through joint maximum likelihood estimation. IRT has many advantages over classical
test theory. It tends to produce more reliable ability estimates, allows to link the scores of different
individuals in different tests through overlapping items, and can help to better understand and
improve the quality of a test (e.g. de Ayala, 2009).

As illustrated in Figure B.1 a selection of items overlap (i) between the baseline and endline
assessments and (ii) across test booklets of different grades within an assessment wave. This allowed
us to project the performance in the baseline and endline assessment onto a common scale through
the estimation of an IRT one-parameter model. This procedure yields for every student i two ability
estimates, namely one for the baseline assessment, i.e. θBL

i , and one for the endline assessment,
i.e. θEL

i . The latter serves as outcome variable in the regression models that are labeled with
“IRT-Scores”.

Converting IRT-Scores to School Year Equivalents. To allow for an intuitive interpretation,
IRT scores can be represented as school year equivalents. For this purpose, we re-scale ability
estimates based on between-grade ability differences. To obtain between-grade ability differences,
we use the standardized endline IRT score from 651 pure control students (Y EL) and regress it on
the students’ grade level (GL), i.e.

Y EL
ic = α+ πGLc + εic. (B.1)

We obtain π̂=0.36 (p-value<0.01) for the average math ability progression between consecutive
grade levels. This means that the average ability difference between third and fourth graders, fourth
and fifth graders, and fifth and sixth graders in October 2018 equaled 0.36σ.

The estimated program effects can be divided by this average ability difference between ad-
jacent grades and then be interpreted as proportion of the students’ average progress during one
school year. Note, however, that ability differences between grades do not only represent what chil-
dren learn in their regular math classes at school but also reflect age-based cognitive development,
learning at home or spillovers from other subjects (e.g. literacy or science).
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